- 1. Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China;
- 2. Department of Radiology, Sanya People’s Hospital, Sanya 572000, P. R. China;
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263. |
2. | 郝运, 李川, 文天夫, 等. 全球及中国的肝癌流行病学特征: 基于《2022全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(7): 781-789. |
3. | 姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780. |
4. | Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology, 2018, 67(1): 401-421. |
5. | Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 2020, 371: m3544. |
6. | Yao S, Ye Z, Wei Y, et al. Radiomics in hepatocellular carcinoma: a state-of-the-art review. World J Gastrointest Oncol, 2021, 13(11): 1599-1615. |
7. | Tian G, Yang S, Yuan J, et al. Comparative efficacy of treatment strategies for hepatocellular carcinoma: systematic review and network meta-analysis. BMJ Open, 2018, 8(10): e021269. |
8. | Hricak H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology, 2011, 259(3): 633-640. |
9. | Yarchoan M, Agarwal P, Villanueva A, et al. Correction: recent developments and therapeutic strategies against hepatocellular carcinoma. Cancer Res, 2019, 79(22): 5897. |
10. | 梁寻杰, 覃小珊, 黄赞松. 肝癌预后影响因素研究进展. 右江民族医学院学报, 2020, 42(5): 642-645. |
11. | Di Tommaso L, Spadaccini M, Donadon M, et al. Role of liver biopsy in hepatocellular carcinoma. World J Gastroenterol, 2019, 25(40): 6041-6052. |
12. | Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014, 5: 4006. |
13. | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. |
14. | Medavaram S, Zhang Y. Emerging therapies in advanced hepatocellular carcinoma. Exp Hematol Oncol, 2018, 7: 17. |
15. | Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl Med, 2020, 61(4): 488-495. |
16. | Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, They are data. Radiology, 2016, 278(2): 563-577. |
17. | Lv K, Cao X, Du P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma. World J Gastroenterol, 2022, 28(20): 2176-2183. |
18. | Zhou HY, Cheng JM, Chen TW, et al. CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Clinics (Sao Paulo), 2023, 78: 100264. |
19. | Hu HT, Wang Z, Huang XW, et al. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma. Eur Radiol, 2019, 29(6): 2890-2901. |
20. | Scapicchio C, Gabelloni M, Barucci A, et al. A deep look into radiomics. Radiol Med, 2021, 126(10): 1296-1311. |
21. | Chen CI, Lu NH, Huang YH, et al. Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks. J Xray Sci Technol, 2022, 30(5): 953-966. |
22. | Massoptier L, Casciaro S. A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans. Eur Radiol, 2008, 18(8): 1658-1665. |
23. | Wang L, Tan J, Ge Y, et al. Assessment of liver metastases radiomic feature reproducibility with deep-learning-based semi-automatic segmentation software. Acta Radiol, 2021, 62(3): 291-301. |
24. | Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol, 2016, 61(13): R150-R166. |
25. | Yang F, Ford JC, Dogan N, et al. Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol, 2018, 7(3): 445-458. |
26. | Dobbin KK, Simon RM. Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genomics, 2011, 4: 31. |
27. | Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep, 2015, 5: 13087. |
28. | Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp, 2018, 2(1): 36. |
29. | Varghese BA, Cen SY, Hwang DH, et al. Texture analysis of imaging: what radiologists need to know. AJR Am J Roentgenol, 2019, 212(3): 520-528. |
30. | Elderkin J, Al Hallak N, Azmi AS, et al. Hepatocellular carcinoma: surveillance, diagnosis, evaluation and management. Cancers (Basel), 2023, 15(21): 5118. |
31. | Harding-Theobald E, Louissaint J, Maraj B, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment Pharmacol Ther, 2021, 54(7): 890-901. |
32. | Ding Z, Lin K, Fu J, et al. An MR-based radiomics model for differentiation between hepatocellular carcinoma and focal nodular hyperplasia in non-cirrhotic liver. World J Surg Oncol, 2021, 19(1): 181. |
33. | Zhao X, Zhou Y, Zhang Y, et al. Radiomics based on contrast-enhanced MRI in differentiation between fat-poor angiomyolipoma and hepatocellular carcinoma in noncirrhotic liver: a multicenter analysis. Front Oncol, 2021, 11: 744756. |
34. | Nie P, Wang N, Pang J, et al. CT-based radiomics nomogram: a potential tool for differentiating hepatocellular adenoma from hepatocellular carcinoma in the noncirrhotic liver. Acad Radiol, 2021, 28(6): 799-807. |
35. | Hu MJ, Yu YX, Fan YF, et al. CT-based radiomics model to distinguish necrotic hepatocellular carcinoma from pyogenic liver abscess. Clin Radiol, 2021, 76(2): 161. e111-161. e117. |
36. | Mahmoudi S, Bernatz S, Ackermann J, et al. Computed tomography radiomics to differentiate intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Clin Oncol (R Coll Radiol), 2023, 35(5): e312-e318. |
37. | Wang X, Wang S, Yin X, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma. Comput Biol Med, 2022, 141: 105058. |
38. | Ravina M, Mishra A, Kote R, et al. Role of textural analysis parameters derived from FDG PET/CT in differentiating hepatocellular carcinoma and hepatic metastases. Nucl Med Commun, 2023, 44(5): 381-389. |
39. | Su LY, Xu M, Chen YL, et al. Ultrasomics in liver cancer: developing a radiomics model for differentiating intrahepatic cholangiocarcinoma from hepatocellular carcinoma using contrast-enhanced ultrasound. World J Radiol, 2024, 16(7): 247-255. |
40. | Martins-Filho SN, Paiva C, Azevedo RS, et al. Histological grading of hepatocellular carcinoma-a systematic review of literature. Front Med (Lausanne), 2017, 4: 193. |
41. | Wu C, Du X, Zhang Y, et al. Five machine learning-based radiomics models for preoperative prediction of histological grade in hepatocellular carcinoma. J Cancer Res Clin Oncol, 2023, 149(16): 15103-15112. |
42. | Yan Y, Si Z, Chun C, et al. Multiphase MRI-based radiomics for predicting histological grade of hepatocellular carcinoma. J Magn Reson Imaging, 2024, 60(5): 2117-2127. |
43. | Ameli S, Venkatesh BA, Shaghaghi M, et al. Role of MRI-derived radiomics features in determining degree of tumor differentiation of hepatocellular carcinoma. Diagnostics (Basel), 2022, 12(10): 2386. |
44. | Brancato V, Garbino N, Salvatore M, et al. MRI-based radiomic features help identify lesions and predict histopathological grade of hepatocellular carcinoma. Diagnostics (Basel), 2022, 12(5): 1085. |
45. | Li C, Xu J, Liu Y, et al. Kupffer phase radiomics signature in sonazoid-enhanced ultrasound is an independent and effective predictor of the pathologic grade of hepatocellular carcinoma. J Oncol, 2022, 2022: 6123242. |
46. | 王恺悌, 巴登才仁·安蕊, 丛赟, 等. 肝细胞癌微血管侵犯术后早期复发的研究进展. 中国普外基础与临床杂志, 2024, 31(11): 1399-1405. |
47. | Erstad DJ, Tanabe KK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma. Ann Surg Oncol, 2019, 26(5): 1474-1493. |
48. | Lim KC, Chow PK, Allen JC, et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann Surg, 2011, 254(1): 108-113. |
49. | Sumie S, Nakashima O, Okuda K, et al. The significance of classifying microvascular invasion in patients with hepatocellular carcinoma. Ann Surg Oncol, 2014, 21(3): 1002-1009. |
50. | Zhang ZH, Jiang C, Qiang ZY, et al. Role of microvascular invasion in early recurrence of hepatocellular carcinoma after liver resection: a literature review. Asian J Surg, 2024, 47(5): 2138-2143. |
51. | Hwang S, Lee YJ, Kim KH, et al. The impact of tumor size on long-term survival outcomes after resection of solitary hepatocellular carcinoma: single-institution experience with 2 558 patients. J Gastrointest Surg, 2015, 19(7): 1281-1290. |
52. | Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol, 2009, 10(1): 35-43. |
53. | Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int, 2017, 11(4): 317-370. |
54. | Xia TY, Zhou ZH, Meng XP, et al. Predicting microvascular invasion in hepatocellular carcinoma using ct-based radiomics model. Radiology, 2023, 307(4): e222729. |
55. | Chong HH, Yang L, Sheng RF, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm. Eur Radiol, 2021, 31(7): 4824-4838. |
56. | Li Y, Zhang Y, Fang Q, et al. Radiomics analysis of [18F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2599-2614. |
57. | Li X, Yao Q, Liu C, et al. Macrotrabecular-massive hepatocellular carcinoma: what should we know? J Hepatocell Carcinoma, 2022, 9: 379-387. |
58. | Chai F, Ma Y, Feng C, et al. Prediction of macrotrabecular-massive hepatocellular carcinoma by using MR-based models and their prognostic implications. Abdom Radiol (NY), 2024, 49(2): 447-457. |
59. | Li M, Fan Y, You H, et al. Dual-energy CT deep learning radiomics to predict macrotrabecular-massive hepatocellular carcinoma. Radiology, 2023, 308(2): e230255. |
60. | Hu S, Kang Y, Xie Y, et al. 18F-FDG PET/CT-based radiomics nomogram for preoperative prediction of macrotrabecular-massive hepatocellular carcinoma: a two-center study. Abdom Radiol (NY), 2023, 48(2): 532-542. |
61. | Luo M, Liu X, Yong J, et al. Preoperative prediction of macrotrabecular-massive hepatocellular carcinoma based on B-Mode US and CEUS. Eur Radiol, 2023, 33(6): 4024-4033. |
62. | Renne SL, Woo HY, Allegra S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma. Hepatology, 2020, 71(1): 183-195. |
63. | Lu L, Wei W, Huang C, et al. A new horizon in risk stratification of hepatocellular carcinoma by integrating vessels that encapsulate tumor clusters and microvascular invasion. Hepatol Int, 2021, 15(3): 651-662. |
64. | Yu Y, Fan Y, Wang X, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Eur Radiol, 2022, 32(2): 959-970. |
65. | Zhang C, Zhong H, Zhao F, et al. Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma: machine learning model based on contrast-enhanced computed tomography. World J Gastrointest Oncol, 2024, 16(3): 857-874. |
66. | Dong X, Yang J, Zhang B, et al. Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma. J Magn Reson Imaging, 2024, 59(1): 108-119. |
67. | Luo Y, Ren F, Liu Y, et al. Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med, 2015, 8(7): 10235-10247. |
68. | Perou CM, Jeffrey SS, van de Rijn M, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A, 1999, 96(16): 9212-9217. |
69. | Roncalli M, Park YN, Di Tommaso L. Histopathological classification of hepatocellular carcinoma. Dig Liver Dis, 2010, 42 Suppl 3: S228-S234. |
70. | Ma Y, Xu R, Liu X, et al. LY3214996 relieves acquired resistance to sorafenib in hepatocellular carcinoma cells. Int J Med Sci, 2021, 18(6): 1456-1464. |
71. | Gong XQ, Liu N, Tao YY, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma. Sci Rep, 2023, 13(1): 7710. |
72. | Che F, Xu Q, Li Q, et al. Radiomics signature: a potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma. World J Gastroenterol, 2022, 28(14): 1479-1493. |
73. | Gong XQ, Liu N, Tao YY, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma. Sci Rep, 2023, 13(1): 7710. |
74. | Hu X, Wang Q, Huang G, et al. Gadoxetic acid-enhanced MRI-based radiomics signature: a potential imaging biomarker for identifying cytokeratin 19-positive hepatocellular carcinoma. Comput Math Methods Med, 2023, 2023: 5424204. |
75. | Qian H, Shen Z, Zhou D, et al. Intratumoral and peritumoral radiomics model based on abdominal ultrasound for predicting Ki-67 expression in patients with hepatocellular cancer. Front Oncol, 2023, 13: 1209111. |
76. | Tabrizian P, Jibara G, Shrager B, et al. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg, 2015, 261(5): 947-955. |
77. | Ji GW, Zhu FP, Xu Q, et al. Radiomic features at contrast-enhanced ct predict recurrence in early stage hepatocellular carcinoma: a multi-institutional study. Radiology, 2020, 294(3): 568-579. |
78. | Li SQ, Su LL, Xu TF, et al. Radiomics model based on contrast-enhanced computed tomography to predict early recurrence in patients with hepatocellular carcinoma after radical resection. World J Gastroenterol, 2023, 29(26): 4186-4199. |
79. | Tsurusaki M, Murakami T. Surgical and locoregional therapy of HCC: TACE. Liver Cancer, 2015, 4(3): 165-175. |
80. | Zhao Y, Zhang J, Wang N, et al. Intratumoral and peritumoral radiomics based on contrast-enhanced MRI for preoperatively predicting treatment response of transarterial chemoembolization in hepatocellular carcinoma. BMC Cancer, 2023, 23(1): 1026. |
81. | Shi ZX, Li CF, Zhao LF, et al. Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int, 2024, 23(4): 361-369. |
82. | Li Y, Chen J, Weng S, et al. Small hepatocellular carcinoma: using MRI to predict histological grade and Ki-67 expression. Clin Radiol, 2019, 74(8): 653. e651-653. e659. |
83. | Gillams A, Khan Z, Osborn P, et al. Survival after radiofrequency ablation in 122 patients with inoperable colorectal lung metastases. Cardiovasc Intervent Radiol, 2013, 36(3): 724-730. |
84. | Horvat N, Araujo-Filho JAB, Assuncao-Jr AN, et al. Radiomic analysis of MRI to predict sustained complete response after radiofrequency ablation in patients with hepatocellular carcinoma - a pilot study. Clinics (Sao Paulo), 2021, 76: e2888. |
85. | Zhang X, Wang C, Zheng D, et al. Radiomics nomogram based on multi-parametric magnetic resonance imaging for predicting early recurrence in small hepatocellular carcinoma after radiofrequency ablation. Front Oncol, 2022, 12: 1013770. |
86. | Zheng BH, Liu LZ, Zhang ZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer, 2018, 18(1): 1148. |
87. | Schön F, Kieslich A, Nebelung H, et al. Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma. Sci Rep, 2024, 14(1): 590. |
88. | Ferro M, de Cobelli O, Vartolomei MD, et al. Prostate cancer radiogenomics-from imaging to molecular characterization. Int J Mol Sci, 2021, 22(18): 9971. |
89. | Liu Z, Duan T, Zhang Y, et al. Radiogenomics: a key component of precision cancer medicine. Br J Cancer, 2023, 129(5): 741-753. |
- 1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
- 2. 郝运, 李川, 文天夫, 等. 全球及中国的肝癌流行病学特征: 基于《2022全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(7): 781-789.
- 3. 姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
- 4. Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology, 2018, 67(1): 401-421.
- 5. Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 2020, 371: m3544.
- 6. Yao S, Ye Z, Wei Y, et al. Radiomics in hepatocellular carcinoma: a state-of-the-art review. World J Gastrointest Oncol, 2021, 13(11): 1599-1615.
- 7. Tian G, Yang S, Yuan J, et al. Comparative efficacy of treatment strategies for hepatocellular carcinoma: systematic review and network meta-analysis. BMJ Open, 2018, 8(10): e021269.
- 8. Hricak H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology, 2011, 259(3): 633-640.
- 9. Yarchoan M, Agarwal P, Villanueva A, et al. Correction: recent developments and therapeutic strategies against hepatocellular carcinoma. Cancer Res, 2019, 79(22): 5897.
- 10. 梁寻杰, 覃小珊, 黄赞松. 肝癌预后影响因素研究进展. 右江民族医学院学报, 2020, 42(5): 642-645.
- 11. Di Tommaso L, Spadaccini M, Donadon M, et al. Role of liver biopsy in hepatocellular carcinoma. World J Gastroenterol, 2019, 25(40): 6041-6052.
- 12. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014, 5: 4006.
- 13. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
- 14. Medavaram S, Zhang Y. Emerging therapies in advanced hepatocellular carcinoma. Exp Hematol Oncol, 2018, 7: 17.
- 15. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl Med, 2020, 61(4): 488-495.
- 16. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, They are data. Radiology, 2016, 278(2): 563-577.
- 17. Lv K, Cao X, Du P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma. World J Gastroenterol, 2022, 28(20): 2176-2183.
- 18. Zhou HY, Cheng JM, Chen TW, et al. CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Clinics (Sao Paulo), 2023, 78: 100264.
- 19. Hu HT, Wang Z, Huang XW, et al. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma. Eur Radiol, 2019, 29(6): 2890-2901.
- 20. Scapicchio C, Gabelloni M, Barucci A, et al. A deep look into radiomics. Radiol Med, 2021, 126(10): 1296-1311.
- 21. Chen CI, Lu NH, Huang YH, et al. Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks. J Xray Sci Technol, 2022, 30(5): 953-966.
- 22. Massoptier L, Casciaro S. A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans. Eur Radiol, 2008, 18(8): 1658-1665.
- 23. Wang L, Tan J, Ge Y, et al. Assessment of liver metastases radiomic feature reproducibility with deep-learning-based semi-automatic segmentation software. Acta Radiol, 2021, 62(3): 291-301.
- 24. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol, 2016, 61(13): R150-R166.
- 25. Yang F, Ford JC, Dogan N, et al. Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol, 2018, 7(3): 445-458.
- 26. Dobbin KK, Simon RM. Optimally splitting cases for training and testing high dimensional classifiers. BMC Med Genomics, 2011, 4: 31.
- 27. Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep, 2015, 5: 13087.
- 28. Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp, 2018, 2(1): 36.
- 29. Varghese BA, Cen SY, Hwang DH, et al. Texture analysis of imaging: what radiologists need to know. AJR Am J Roentgenol, 2019, 212(3): 520-528.
- 30. Elderkin J, Al Hallak N, Azmi AS, et al. Hepatocellular carcinoma: surveillance, diagnosis, evaluation and management. Cancers (Basel), 2023, 15(21): 5118.
- 31. Harding-Theobald E, Louissaint J, Maraj B, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment Pharmacol Ther, 2021, 54(7): 890-901.
- 32. Ding Z, Lin K, Fu J, et al. An MR-based radiomics model for differentiation between hepatocellular carcinoma and focal nodular hyperplasia in non-cirrhotic liver. World J Surg Oncol, 2021, 19(1): 181.
- 33. Zhao X, Zhou Y, Zhang Y, et al. Radiomics based on contrast-enhanced MRI in differentiation between fat-poor angiomyolipoma and hepatocellular carcinoma in noncirrhotic liver: a multicenter analysis. Front Oncol, 2021, 11: 744756.
- 34. Nie P, Wang N, Pang J, et al. CT-based radiomics nomogram: a potential tool for differentiating hepatocellular adenoma from hepatocellular carcinoma in the noncirrhotic liver. Acad Radiol, 2021, 28(6): 799-807.
- 35. Hu MJ, Yu YX, Fan YF, et al. CT-based radiomics model to distinguish necrotic hepatocellular carcinoma from pyogenic liver abscess. Clin Radiol, 2021, 76(2): 161. e111-161. e117.
- 36. Mahmoudi S, Bernatz S, Ackermann J, et al. Computed tomography radiomics to differentiate intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Clin Oncol (R Coll Radiol), 2023, 35(5): e312-e318.
- 37. Wang X, Wang S, Yin X, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma. Comput Biol Med, 2022, 141: 105058.
- 38. Ravina M, Mishra A, Kote R, et al. Role of textural analysis parameters derived from FDG PET/CT in differentiating hepatocellular carcinoma and hepatic metastases. Nucl Med Commun, 2023, 44(5): 381-389.
- 39. Su LY, Xu M, Chen YL, et al. Ultrasomics in liver cancer: developing a radiomics model for differentiating intrahepatic cholangiocarcinoma from hepatocellular carcinoma using contrast-enhanced ultrasound. World J Radiol, 2024, 16(7): 247-255.
- 40. Martins-Filho SN, Paiva C, Azevedo RS, et al. Histological grading of hepatocellular carcinoma-a systematic review of literature. Front Med (Lausanne), 2017, 4: 193.
- 41. Wu C, Du X, Zhang Y, et al. Five machine learning-based radiomics models for preoperative prediction of histological grade in hepatocellular carcinoma. J Cancer Res Clin Oncol, 2023, 149(16): 15103-15112.
- 42. Yan Y, Si Z, Chun C, et al. Multiphase MRI-based radiomics for predicting histological grade of hepatocellular carcinoma. J Magn Reson Imaging, 2024, 60(5): 2117-2127.
- 43. Ameli S, Venkatesh BA, Shaghaghi M, et al. Role of MRI-derived radiomics features in determining degree of tumor differentiation of hepatocellular carcinoma. Diagnostics (Basel), 2022, 12(10): 2386.
- 44. Brancato V, Garbino N, Salvatore M, et al. MRI-based radiomic features help identify lesions and predict histopathological grade of hepatocellular carcinoma. Diagnostics (Basel), 2022, 12(5): 1085.
- 45. Li C, Xu J, Liu Y, et al. Kupffer phase radiomics signature in sonazoid-enhanced ultrasound is an independent and effective predictor of the pathologic grade of hepatocellular carcinoma. J Oncol, 2022, 2022: 6123242.
- 46. 王恺悌, 巴登才仁·安蕊, 丛赟, 等. 肝细胞癌微血管侵犯术后早期复发的研究进展. 中国普外基础与临床杂志, 2024, 31(11): 1399-1405.
- 47. Erstad DJ, Tanabe KK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma. Ann Surg Oncol, 2019, 26(5): 1474-1493.
- 48. Lim KC, Chow PK, Allen JC, et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann Surg, 2011, 254(1): 108-113.
- 49. Sumie S, Nakashima O, Okuda K, et al. The significance of classifying microvascular invasion in patients with hepatocellular carcinoma. Ann Surg Oncol, 2014, 21(3): 1002-1009.
- 50. Zhang ZH, Jiang C, Qiang ZY, et al. Role of microvascular invasion in early recurrence of hepatocellular carcinoma after liver resection: a literature review. Asian J Surg, 2024, 47(5): 2138-2143.
- 51. Hwang S, Lee YJ, Kim KH, et al. The impact of tumor size on long-term survival outcomes after resection of solitary hepatocellular carcinoma: single-institution experience with 2 558 patients. J Gastrointest Surg, 2015, 19(7): 1281-1290.
- 52. Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol, 2009, 10(1): 35-43.
- 53. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int, 2017, 11(4): 317-370.
- 54. Xia TY, Zhou ZH, Meng XP, et al. Predicting microvascular invasion in hepatocellular carcinoma using ct-based radiomics model. Radiology, 2023, 307(4): e222729.
- 55. Chong HH, Yang L, Sheng RF, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm. Eur Radiol, 2021, 31(7): 4824-4838.
- 56. Li Y, Zhang Y, Fang Q, et al. Radiomics analysis of [18F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2599-2614.
- 57. Li X, Yao Q, Liu C, et al. Macrotrabecular-massive hepatocellular carcinoma: what should we know? J Hepatocell Carcinoma, 2022, 9: 379-387.
- 58. Chai F, Ma Y, Feng C, et al. Prediction of macrotrabecular-massive hepatocellular carcinoma by using MR-based models and their prognostic implications. Abdom Radiol (NY), 2024, 49(2): 447-457.
- 59. Li M, Fan Y, You H, et al. Dual-energy CT deep learning radiomics to predict macrotrabecular-massive hepatocellular carcinoma. Radiology, 2023, 308(2): e230255.
- 60. Hu S, Kang Y, Xie Y, et al. 18F-FDG PET/CT-based radiomics nomogram for preoperative prediction of macrotrabecular-massive hepatocellular carcinoma: a two-center study. Abdom Radiol (NY), 2023, 48(2): 532-542.
- 61. Luo M, Liu X, Yong J, et al. Preoperative prediction of macrotrabecular-massive hepatocellular carcinoma based on B-Mode US and CEUS. Eur Radiol, 2023, 33(6): 4024-4033.
- 62. Renne SL, Woo HY, Allegra S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma. Hepatology, 2020, 71(1): 183-195.
- 63. Lu L, Wei W, Huang C, et al. A new horizon in risk stratification of hepatocellular carcinoma by integrating vessels that encapsulate tumor clusters and microvascular invasion. Hepatol Int, 2021, 15(3): 651-662.
- 64. Yu Y, Fan Y, Wang X, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Eur Radiol, 2022, 32(2): 959-970.
- 65. Zhang C, Zhong H, Zhao F, et al. Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma: machine learning model based on contrast-enhanced computed tomography. World J Gastrointest Oncol, 2024, 16(3): 857-874.
- 66. Dong X, Yang J, Zhang B, et al. Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma. J Magn Reson Imaging, 2024, 59(1): 108-119.
- 67. Luo Y, Ren F, Liu Y, et al. Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med, 2015, 8(7): 10235-10247.
- 68. Perou CM, Jeffrey SS, van de Rijn M, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A, 1999, 96(16): 9212-9217.
- 69. Roncalli M, Park YN, Di Tommaso L. Histopathological classification of hepatocellular carcinoma. Dig Liver Dis, 2010, 42 Suppl 3: S228-S234.
- 70. Ma Y, Xu R, Liu X, et al. LY3214996 relieves acquired resistance to sorafenib in hepatocellular carcinoma cells. Int J Med Sci, 2021, 18(6): 1456-1464.
- 71. Gong XQ, Liu N, Tao YY, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma. Sci Rep, 2023, 13(1): 7710.
- 72. Che F, Xu Q, Li Q, et al. Radiomics signature: a potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma. World J Gastroenterol, 2022, 28(14): 1479-1493.
- 73. Gong XQ, Liu N, Tao YY, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma. Sci Rep, 2023, 13(1): 7710.
- 74. Hu X, Wang Q, Huang G, et al. Gadoxetic acid-enhanced MRI-based radiomics signature: a potential imaging biomarker for identifying cytokeratin 19-positive hepatocellular carcinoma. Comput Math Methods Med, 2023, 2023: 5424204.
- 75. Qian H, Shen Z, Zhou D, et al. Intratumoral and peritumoral radiomics model based on abdominal ultrasound for predicting Ki-67 expression in patients with hepatocellular cancer. Front Oncol, 2023, 13: 1209111.
- 76. Tabrizian P, Jibara G, Shrager B, et al. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg, 2015, 261(5): 947-955.
- 77. Ji GW, Zhu FP, Xu Q, et al. Radiomic features at contrast-enhanced ct predict recurrence in early stage hepatocellular carcinoma: a multi-institutional study. Radiology, 2020, 294(3): 568-579.
- 78. Li SQ, Su LL, Xu TF, et al. Radiomics model based on contrast-enhanced computed tomography to predict early recurrence in patients with hepatocellular carcinoma after radical resection. World J Gastroenterol, 2023, 29(26): 4186-4199.
- 79. Tsurusaki M, Murakami T. Surgical and locoregional therapy of HCC: TACE. Liver Cancer, 2015, 4(3): 165-175.
- 80. Zhao Y, Zhang J, Wang N, et al. Intratumoral and peritumoral radiomics based on contrast-enhanced MRI for preoperatively predicting treatment response of transarterial chemoembolization in hepatocellular carcinoma. BMC Cancer, 2023, 23(1): 1026.
- 81. Shi ZX, Li CF, Zhao LF, et al. Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int, 2024, 23(4): 361-369.
- 82. Li Y, Chen J, Weng S, et al. Small hepatocellular carcinoma: using MRI to predict histological grade and Ki-67 expression. Clin Radiol, 2019, 74(8): 653. e651-653. e659.
- 83. Gillams A, Khan Z, Osborn P, et al. Survival after radiofrequency ablation in 122 patients with inoperable colorectal lung metastases. Cardiovasc Intervent Radiol, 2013, 36(3): 724-730.
- 84. Horvat N, Araujo-Filho JAB, Assuncao-Jr AN, et al. Radiomic analysis of MRI to predict sustained complete response after radiofrequency ablation in patients with hepatocellular carcinoma - a pilot study. Clinics (Sao Paulo), 2021, 76: e2888.
- 85. Zhang X, Wang C, Zheng D, et al. Radiomics nomogram based on multi-parametric magnetic resonance imaging for predicting early recurrence in small hepatocellular carcinoma after radiofrequency ablation. Front Oncol, 2022, 12: 1013770.
- 86. Zheng BH, Liu LZ, Zhang ZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer, 2018, 18(1): 1148.
- 87. Schön F, Kieslich A, Nebelung H, et al. Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma. Sci Rep, 2024, 14(1): 590.
- 88. Ferro M, de Cobelli O, Vartolomei MD, et al. Prostate cancer radiogenomics-from imaging to molecular characterization. Int J Mol Sci, 2021, 22(18): 9971.
- 89. Liu Z, Duan T, Zhang Y, et al. Radiogenomics: a key component of precision cancer medicine. Br J Cancer, 2023, 129(5): 741-753.