1. |
Matos KT, Arantes T, Souza AW, et al. Retinal angiography and colour Doppler of retrobulbar vessels in Takayasu arteritis. Can J Ophthalmol, 2014, 49(1): 80-86.
|
2. |
Koyanagi K, Ozawa S, Ninomiya Y, et al. Indocyanine green fluorescence imaging for evaluating blood flow in the reconstructed conduit after esophageal cancer surgery. Surg Today, 2022, 52(3): 369-376.
|
3. |
Watanabe J, Takemasa I, Kotake M, et al. Blood perfusion assessment by indocyanine green fluorescence imaging for minimally invasive rectal cancer surgery (EssentiAL trial): A randomized clinical trial. Ann Surg, 2023, 278(4): e688-e694. doi: 10.1097/SLA.0000000000005907.
|
4. |
Gan YX, Yang ZL, Pan YX, et al. Change of indocyanine green clearance ability and liver function after transcatheter intra-arterial therapies and its impact on outcomes of resectable hepatocellular carcinoma: a retrospective cohort study. Int J Surg, 2024, 110(5): 2832-2844.
|
5. |
Lwin TM, Hoffman RM, Bouvet M. Fluorescence-guided hepatobiliary surgery with long and short wavelength fluorophores. Hepatobiliary Surg Nutr, 2020, 9(5): 615-639.
|
6. |
Preziosi A, Cirelli C, Waterhouse D, et al. State of the art medical devices for fluorescence-guided surgery (FGS): technical review and future developments. Surg Endosc, 2024, 38(11): 6227-6236.
|
7. |
黄徐建, 李敬东. 碘化油-吲哚菁绿乳剂在肝切除术中导航中的应用. 中国普外基础与临床杂志, 2023, 30(6): 646-649.
|
8. |
杨勇, 李姗姗, 张正国, 等. 实时吲哚菁绿荧光成像导航技术在直肠癌手术中的应用. 中国普外基础与临床杂志, 2024, 31(1): 45-49.
|
9. |
Moeini A, Sia D, Bardeesy N, et al. Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma. Clin Cancer Res, 2016, 22(2): 291-300.
|
10. |
Sirica AE, Gores GJ, Groopman JD, et al. Intrahepatic cholangiocarcinoma: continuing challenges and translational advances. Hepatology, 2019, 69(4): 1803-1815.
|
11. |
Anwanwan D, Singh SK, Singh S, et al. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer, 2020, 1873(1): 188314. doi: 10.1016/j.bbcan.2019.188314.
|
12. |
Kam AE, Masood A, Shroff RT. Current and emerging therapies for advanced biliary tract cancers. Lancet Gastroenterol Hepatol, 2021, 6(11): 956-969.
|
13. |
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology, 2023, 77(5): 1773-1796.
|
14. |
Goyal L, Meric-Bernstam F, Hollebecque A, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma. N Engl J Med, 2023, 388(3): 228-239.
|
15. |
Moris D, Palta M, Kim C, et al. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J Clin, 2023, 73(2): 198-222.
|
16. |
Fan W, Zhu B, Chen S, et al. Survival in patients with recurrent intermediate-stage hepatocellular carcinoma: Sorafenib plus TACE vs TACE alone randomized clinical trial. JAMA Oncol, 2024, 10(8): 1047-1054.
|
17. |
Gunasekaran G, Bekki Y, Lourdusamy V, et al. Surgical treatments of hepatobiliary cancers. Hepatology, 2021, 73 Suppl 1: 128-136.
|
18. |
Bahra M, Yahyazadeh A. Surgical strategies for combined hepatocellular-cholangiocarcinoma (cHCC-CC). Cancers (Basel), 2023, 15(3): 774. doi: 10.3390/cancers15030774.
|
19. |
Wang K, Liu Y, Hao M, et al. Clinical outcomes of parenchymal-sparing versus anatomic resection for colorectal liver metastases: a systematic review and meta-analysis. World J Surg Oncol, 2023, 21(1): 241. doi: 10.1186/s12957-023-03127-1.
|
20. |
Jiao S, Li G, Zhang D, et al. Anatomic versus non-anatomic resection for hepatocellular carcinoma, do we have an answer? A meta-analysis. Int J Surg. 2020, 80: 243-255.
|
21. |
Dili A, Bertrand C. Laparoscopic ultrasonography as an alternative to intraoperative cholangiography during laparoscopic cholecystectomy. World J Gastroenterol, 2017, 23(29): 5438-5450.
|
22. |
Benson RC, Kues HA. Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol, 1978, 23(1): 159-163.
|
23. |
Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol, 2000, 45(1): 15-27.
|
24. |
Aoki T, Yasuda D, Shimizu Y, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg, 2008, 32(8): 1763-1767.
|
25. |
Nanashima A, Yano K, Tobinaga S. Efficacy of hepatic segmental visualization using indocyanine green photodynamic eye imaging. World J Surg, 2019, 43(5): 1308-1312.
|
26. |
Urade T, Sawa H, Iwatani Y, et al. Laparoscopic anatomical liver resection using indocyanine green fluorescence imaging. Asian J Surg, 2020, 43(1): 362-368.
|
27. |
Zheng K, He D, Liao A, et al. Laparoscopic segmentectomy Ⅳ using hepatic round ligament approach combined with fluorescent negative staining method. Ann Surg Oncol, 2022, 29(5): 2980-2981.
|
28. |
Zhang Y, Zhang Y, Zhu J, et al. Clinical application of indocyanine green fluorescence imaging in laparoscopic lymph node dissection for intrahepatic cholangiocarcinoma: A pilot study (with video). Surgery, 2022, 171(6): 1589-1595.
|
29. |
Achterberg FB, Bijlstra OD, Slooter MD, et al. ICG-fluorescence imaging for margin assessment during minimally invasive colorectal liver metastasis resection. JAMA Netw Open, 2024, 7(4): e246548. doi: 10.1001/jamanetworkopen.2024.6548.
|
30. |
Ambe PC, Plambeck J, Fernandez-Jesberg V, et al. The role of indocyanine green fluoroscopy for intraoperative bile duct visualization during laparoscopic cholecystectomy: an observational cohort study in 70 patients. Patient Saf Surg, 2019, 13: 2. doi: 10.1186/s13037-019-0182-8.
|
31. |
方程, 王飘, 苏松, 等. 吲哚菁绿荧光成像在再次胆道探查术中的对照研究. 中国普外基础与临床杂志, 2022, 29(6): 711-715.
|
32. |
Lau NS, Ly M, Liu K, et al. Current and potential applications for indocyanine green in liver transplantation. Transplantation, 2022, 106(7): 1339-1350.
|
33. |
Caimano M, Bianco G, Coppola A, et al. Indocyanine green clearance tests to assess liver transplantation outcomes: a systematic review. Int J Surg, 2024, 110(1): 431-440.
|
34. |
Taylor DR, Venable GT, Jones GM, et al. Five-year institutional bibliometric profiles for 103 US neurosurgical residency programs. J Neurosurg, 2015, 123(3): 547-560.
|
35. |
Roldan-Valadez E, Salazar-Ruiz SY, Ibarra-Contreras R, et al. Current concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. Ir J Med Sci, 2019, 188(3): 939-951.
|
36. |
Zhang J, Luo Z, Zhang R, et al. The transition of surgical simulation training and its learning curve: a bibliometric analysis from 2000 to 2023. Int J Surg, 2024, 110(6): 3326-3337.
|
37. |
Garfield E. 100 citation classics from the Journal of the American Medical Association. JAMA, 1987, 257(1): 52-59.
|
38. |
Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A, 2004, 101 Suppl 1(Suppl 1): 5303-5310.
|
39. |
Ha GL, Lehrer EJ, Wang M, et al. Sex Differences in academic productivity across academic ranks and specialties in academic medicine: A systematic review and meta-analysis. JAMA Netw Open, 2021, 4(6): e2112404. doi: 10.1001/jamanetworkopen.2021.12404.
|
40. |
Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, 2009, 15(11): 2491-2504.
|
41. |
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng, 2020, 4(3): 259-271.
|
42. |
Ishizawa T, Bandai Y, Ijichi M, et al. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg, 2010, 97(9): 1369-1377.
|
43. |
Kawaguchi Y, Ishizawa T, Miyata Y, et al. Portal uptake function in veno-occlusive regions evaluated by real-time fluorescent imaging using indocyanine green. J Hepatol, 2013, 58(2): 247-253.
|
44. |
Dip F, LoMenzo E, Sarotto L, et al. Randomized trial of near-infrared incisionless fluorescent cholangiography. Ann Surg, 2019, 270(6): 992-999.
|
45. |
Takao M, Kawaguchi Y, Matsumura M, et al. Probe-based confocal laser endomicroscopy for real-time evaluation of colorectal liver metastasis in resected surgical specimens. Hum Cell, 2023, 36(6): 2066-2073.
|
46. |
Wang X, Teh CSC, Ishizawa T, et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery. Ann Surg, 2021, 274(1): 97-106.
|
47. |
Nishino H, Hatano E, Seo S, et al. Real-time navigation for liver surgery using projection mapping with indocyanine green fluorescence: Development of the novel medical imaging projection system. Ann Surg, 2018, 267(6): 1134-1140.
|
48. |
Ishizawa T, Masuda K, Urano Y, et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol, 2014, 21(2): 440-448.
|
49. |
Dousse D, Vibert E, Nicolas Q, et al. Indocyanine green fluorescence imaging to predict graft survival after orthotopic liver transplantation: a pilot study. Liver Transpl, 2020, 26(10): 1263-1274.
|
50. |
Figueroa R, Golse N, Alvarez FA, et al. Indocyanine green fluorescence imaging to evaluate graft perfusion during liver transplantation. HPB (Oxford), 2019, 21(4): 387-392.
|
51. |
Meijer RPJ, de Valk KS, Deken MM, et al. Intraoperative detection of colorectal and pancreatic liver metastases using SGM-101, a fluorescent antibody targeting CEA. Eur J Surg Oncol, 2021, 47(3 Pt B): 667-673.
|
52. |
Dip F, Lo Menzo E, White KP, et al. Does near-infrared fluorescent cholangiography with indocyanine green reduce bile duct injuries and conversions to open surgery during laparoscopic or robotic cholecystectomy?—A meta-analysis. Surgery, 2021, 169(4): 859-867.
|
53. |
Salehi O, Kazakova V, Vega EA, et al. Indocyanine green staining for intraoperative perfusion assessment. Minerva Surg, 2021, 76(3): 220-228.
|
54. |
Shan L, Chen H, Yang L, et al. Near-infrared fluorescence imaging with indocyanine green for assessment of donor livers in a rat model of ischemia-reperfusion. BMC Gastroenterol, 2022, 22(1): 27. doi: 10.1186/s12876-022-02103-5.
|