1. |
Au EH, Francis A, Bernier-Jean A, et al. Prediction modeling-part 1: regression modeling. Kidney Int, 2020, 97(5): 877-884.
|
2. |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
|
3. |
Deo RC. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
|
4. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594. doi: 10.1136/bmj.g7594.
|
5. |
Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 2024, 385: e078378. doi: 10.1136/bmj-2023-078378.
|
6. |
De Filippo O, Cammann VL, Pancotti C, et al. Machine learning-based prediction of in-hospital death for patients with takotsubo syndrome: the InterTAK-ML model. Eur J Heart Fail, 2023, 25(12): 2299-2311.
|
7. |
曹煜隆, 单娇, 龚志忠, 等. 个体预后与诊断预测模型研究报告规范—TRIPOD声明解读. 中国循证医学杂志, 2020, 20(4): 492-496.
|
8. |
Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med, 2019, 17(1): 230. doi: 10.1186/s12916-019-1466-7.
|
9. |
Jamarani A, Haddadi S, Sarvizadeh R, et al. Big data and predictive analytics: a systematic review of applications. Artificial Intelligence Review, 2024, 57(7):.
|
10. |
Adler-Milstein J, Chen JH, Dhaliwal G. Next-generation artificial intelligence for diagnosis: from predicting diagnostic labels to “wayfinding”. JAMA, 2021, 326(24): 2467-2468.
|
11. |
Smith BT, Smith PM, Harper S, et al. Reducing social inequalities in health: the role of simulation modelling in chronic disease epidemiology to evaluate the impact of population health interventions. J Epidemiol Community Health, 2014, 68(4): 384-389.
|
12. |
Yang C, Kors JA, Ioannou S, et al. Trends in the conduct and reporting of clinical prediction model development and validation: a systematic review. J Am Med Inform Assoc, 2022, 29(5): 983-989.
|
13. |
Bhandari N, Walambe R, Kotecha K, et al. A comprehensive survey on computational learning methods for analysis of gene expression data. Front Mol Biosci, 2022, 9: 907150. doi: 10.3389/fmolb.2022.907150.
|
14. |
Chen P, Wu L, Lei Wang. AI fairness in data management and analytics: a review on challenges, methodologies and applications. Appl Sci, 2023, 13(18): 10258. doi: 10.3390/app131810258.
|
15. |
Liu F, Panagiotakos D. Real-world data: a brief review of the methods, applications, challenges and opportunities. BMC Med Res Methodol, 2022, 22(1): 287. doi: 10.1186/s12874-022-01768-6.
|
16. |
Ferrara E. Fairness and bias in artificial intelligence: a brief survey of sources, impacts, and mitigation strategies. Sci, 2024, 6(1): 3. doi: 10.3390/sci6010003.
|
17. |
Christodoulou E, van Smeden M, Edlinger M, et al. Adaptive sample size determination for the development of clinical prediction models. Diagn Progn Res, 2021, 5(1): 6. doi: 10.1186/s41512-021-00096-5.
|
18. |
Ng W, Minasny B, Mendes WDS, et al. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. SOIL, 6: 565-578. https://doi.org/10.5194/soil-6-565-2020, 2020.
|
19. |
Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration. BMJ, 2023, 380: e071058. doi: 10.1136/bmj-2022-071058.
|
20. |
陶立元, 刘珏. 基于多源数据的个体预后或诊断多因素预测模型报告规范(TRIPOD-Cluster)解读. 中华医学杂志, 2023, 103(36): 2893-2897.
|
21. |
Gerds TA, Kattan MW. Medical risk prediction. New York: Chapman and Hall/CRC, 2021: 312.
|
22. |
Cusworth S, Gkoutos GV, Acharjee A. A novel generative adversarial networks modelling for the class imbalance problem in high dimensional omics data. BMC Med Inform Decis Mak, 2024, 24(1): 90. doi: 10.1186/s12911-024-02487-2.
|
23. |
Rajaraman S, Ganesan P, Antani S. Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks. PLoS One, 2022, 17(1): e0262838. doi: 10.1371/journal.pone.0262838.
|
24. |
Liu S, Vicente LN. Accuracy and fairness trade-offs in machine learning: a stochastic multi-objective approach. Comput Manag Sci, 2022, 19: 513-537.
|
25. |
Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 2007, 115(5): 654-657.
|
26. |
Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med, 2016, 375(13): 1216-1219.
|
27. |
Finlayson SG, Subbaswamy A, Singh K, et al. The clinician and dataset shift in artificial intelligence. N Engl J Med, 2021, 385(3): 283-286.
|
28. |
Probst P, Wright M, Boulesteix AL. Hyperparameters and tuning strategies for random forest. WIREs Data Mining Knowl Discov, 2018, 9.
|
29. |
Talic S, Shah S, Wild H, et al. Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: systematic review and meta-analysis. BMJ, 2021, 375: e068302.
|
30. |
Chen IY, Joshi S, Ghassemi M. Treating health disparities with artificial intelligence. Nat Med, 2020, 26(1): 16-17.
|
31. |
Mazzolenis ME, Bulat E, Schatman ME, et al. The ethical stewardship of artificial intelligence in chronic pain and headache: a narrative review. Curr Pain Headache Rep, 2024, 28(8): 785-792.
|
32. |
Gil-Fuster E, Eisert J, Bravo-Prieto C. Understanding quantum machine learning also requires rethinking generalization. Nat Commun, 2024, 15(1): 2277. doi: 10.1038/s41467-024-45882-z.
|
33. |
de Jong J, Emon MA, Wu P, et al. Deep learning for clustering of multivariate clinical patient trajectories with missing values. Gigascience, 2019, 8(11): giz134. doi: 10.1093/gigascience/giz134.
|