1. |
Yang Y, Yang Y, Ahmed MAEE, et al. Carriage of distinct blaKPC-2 and blaOXA-48 plasmids in a single ST11 hypervirulent Klebsiella pneumoniae isolate in Egypt. BMC Genomics, 2022, 23(1): 20. doi: 10.1186/s12864-021-08214-9.
|
2. |
Zhang X, Ouyang J, He W, et al. Co-occurrence of rapid gene gain and loss in an interhospital outbreak of carbapenem-resistant hypervirulent ST11-K64 Klebsiella pneumoniae. Front Microbiol, 2020, 11: 579618. doi: 10.3389/fmicb.2020.579618.
|
3. |
Shao C, Jin Y, Wang W, et al. An outbreak of carbapenem-resistant Klebsiella pneumoniae of K57 capsular serotype in an emergency intensive care unit of a teaching hospital in China. Front Public Health, 2021, 9: 724212. doi: 10.3389/fpubh.2021.724212.
|
4. |
Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis, 2018, 18(1): 37-46.
|
5. |
Cejas D, Fernández Canigia L, Rincón Cruz G, et al. First isolate of KPC-2-producing Klebsiella pneumonaie sequence type 23 from the Americas. J Clin Microbiol, 2014, 52(9): 3483-3485.
|
6. |
Kang Y, Xu C, Ma W, et al. Genomic characterization of ST11-KL25 hypervirulent KPC-2-producing multidrug-resistant Klebsiella pneumoniae from China. iScience, 2024, 27(12): 111471. doi: 10.1016/j.isci.2024.111471.
|
7. |
Kim HK, Park YK, Wang HJ, et al. Epidemiology and clinical features of post-transplant bloodstream infection: an analysis of 222 consecutive liver transplant recipients. Infect Chemother, 2013, 45(3): 315-324.
|
8. |
Guo L, Peng P, Peng WT, et al. Klebsiella pneumoniae infections after liver transplantation: drug resistance and distribution of pathogens, risk factors, and influence on outcomes. World J Hepatol, 2024, 16(4): 612-624.
|
9. |
Pereira MR, Scully BF, Pouch SM, et al. Risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl, 2015, 21(12): 1511-1519.
|
10. |
Kalpoe JS, Sonnenberg E, Factor SH, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl, 2012, 18(4): 468-474.
|
11. |
中华医学会器官移植学分会, 中华预防医学会医院感染控制学分会, 复旦大学华山医院抗生素研究所. 中国实体器官移植供者来源感染防控专家共识 (2018版). 中华器官移植杂志, 2018, 39(1): 41-52.
|
12. |
Aguado JM, Silva JT, Fernández-Ruiz M, et al. Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev (Orlando), 2018, 32(1): 36-57.
|
13. |
钟林, 杨超, 杨家印, 等. 国家科技部重点研发计划 (2022YFC2304700). 2024 (中期报告). (2024-10-31) [2025-2-10] https://www.most.gov.cn/index.html.
|
14. |
Lübbert C, Becker-Rux D, Rodloff AC, et al. Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case-control analysis. Infection, 2014, 42(2): 309-316.
|
15. |
Gasink LB, Edelstein PH, Lautenbach E, et al. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol, 2009, 30(12): 1180-1185.
|
16. |
Hu Y, Ping Y, Li L, et al. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients. J Infect Dev Ctries, 2016, 10(3): 208-213.
|
17. |
Dai G, Xu Y, Kong H, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection and associated clinical outcomes. Am J Transl Res, 2021, 13(6): 7276-7281.
|
18. |
Liu P, Li X, Luo M, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection: a meta-analysis. Microb Drug Resist, 2018, 24(2): 190-198.
|
19. |
Procaccio F, Masiero L, Vespasiano F, et al. Organ donor screening for carbapenem-resistant gram-negative bacteria in Italian intensive care units: the DRIn study. Am J Transplant, 2020, 20(1): 262-273.
|
20. |
Zhao ZC, Xu XH, Liu MB, et al. Fecal carriage of carbapenem-resistant Enterobacteriaceae in a Chinese university hospital. Am J Infect Control, 2014, 42(5): e61-e64.
|
21. |
Shu LB, Lu Q, Sun RH, et al. Prevalence and phenotypic characterization of carbapenem-resistant Klebsiella pneumoniae strains recovered from sputum and fecal samples of ICU patients in Zhejiang Province, China. Infect Drug Resist, 2018, 12: 11-18.
|
22. |
Qin X, Wu S, Hao M, et al. The colonization of carbapenem-resistant Klebsiella pneumoniae: epidemiology, resistance mechanisms, and risk factors in patients admitted to intensive care units in China. J Infect Dis, 2020, 221(Suppl 2): S206-S214.
|
23. |
Kontopoulou K, Iosifidis E, Antoniadou E, et al. The clinical significance of carbapenem-resistant Klebsiella pneumoniae rectal colonization in critically ill patients: from colonization to bloodstream infection. J Med Microbiol, 2019, 68(3): 326-335.
|
24. |
Oriol I, Sabé N, Tebé C, et al. Clinical impact of culture-positive preservation fluid on solid organ transplantation: a systematic review and meta-analysis. Transplant Rev (Orlando), 2018, 32(2): 85-91.
|
25. |
Rinaldi M, Bonazzetti C, Gatti M, et al. The impact of preservation fluid culture on graft site arteritis: a systematic review and meta-analysis. Transpl Infect Dis, 2022, 24(6): e13979. doi: 10.1111/tid.13979.
|
26. |
Oriol I, Sabe N, Càmara J, et al. The impact of culturing the organ preservation fluid on solid organ transplantation: a prospective multicenter cohort study. Open Forum Infect Dis, 2019, 6(6): ofz180. doi: 10.1093/ofid/ofz180.
|
27. |
Mularoni A, Cona A, Campanella M, et al. Donor-derived carbapenem-resistant gram-negative bacterial infections in solid organ transplant recipients: active surveillance enhances recipient safety. Am J Transplant, 2024, 24(6): 1046-1056.
|
28. |
席树强, 王洋, 曾强, 等. 肝移植术后供体来源耐碳青霉烯类肺炎克雷伯菌感染治疗分析. 实用器官移植电子杂志, 2020, 8(6): 472-476.
|
29. |
Giannella M, Bartoletti M, Morelli MC, et al. Risk factors for infection with carbapenem-resistant Klebsiella pneumoniae after liver transplantation: the importance of pre- and posttransplant colonization. Am J Transplant, 2015, 15(6): 1708-1715.
|
30. |
Liu N, Yang G, Dang Y, et al. Epidemic, risk factors of carbapenem-resistant Klebsiella pneumoniae infection and its effect on the early prognosis of liver transplantation. Front Cell Infect Microbiol, 2022, 12: 976408. doi: 10.3389/fcimb.2022.976408.
|
31. |
Zhao Y, Zhang W, Zhang X. Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases. Front Cell Infect Microbiol, 2024, 14: 1458316. doi: 10.3389/fcimb.2024.1458316.
|
32. |
Braun SD, Rezk S, Brandt C, et al. Tracking multidrug resistance in gram-negative bacteria in Alexandria, Egypt (2020-2023): an integrated analysis of patient data and diagnostic tools. Antibiotics (Basel), 2024, 13(12): 1185. doi: 10.3390/antibiotics13121185.
|
33. |
Ji CM, Feng XY, Huang YW, et al. The Applications of nanopore sequencing technology in animal and human virus research. Viruses, 2024, 16(5): 798. doi: 10.3390/v16050798.
|
34. |
Zhang J, Xu J, Shen S, et al. Comparison of three colloidal gold immunoassays and GeneXpert Carba-R for the detection of Klebsiella pneumoniae blaKPC-2 variants. J Clin Microbiol, 2024, 62(7): e0015424. doi: 10.1128/jcm.00154-24.
|
35. |
Inoue T, Yagi S, Tanaka Y. Two concepts of hepatitis B core-related antigen assay: a highly sensitive and rapid assay or an effective tool for widespread screening. Viruses, 2024, 16(6): 848. doi: 10.3390/v16060848.
|
36. |
Vieceli T, Henrique LR, Rech TH, et al. Colistin versus polymyxin B for the treatment of carbapenem-resistant Klebsiella pneumoniae bloodstream infections. J Infect Chemother, 2024, 30(7): 621-625.
|
37. |
Petrosillo N, Taglietti F, Granata G. Treatment options for colistin resistant Klebsiella pneumoniae: present and future. J Clin Med, 2019, 8(7): 934. doi: 10.3390/jcm8070934.
|
38. |
Abdelsalam MFA, Abdalla MS, El-Abhar HSE. Prospective, comparative clinical study between high-dose colistin monotherapy and colistin-meropenem combination therapy for treatment of hospital-acquired pneumonia and ventilator-associated pneumonia caused by multidrug-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist, 2018, 15: 127-135.
|
39. |
Wagenlehner F, Lucenteforte E, Pea F, et al. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin Microbiol Infect, 2021: S1198-1743.
|
40. |
Hawser S, Kothari N, Monti F, et al. In vitro activity of eravacycline and comparators against Gram-negative and Gram-positive bacterial isolates collected from patients globally between 2017 and 2020. J Glob Antimicrob Resist, 2023, 33: 304-320.
|
41. |
Huang YS, Yang JL, Wang JT, et al. Evaluation of the synergistic effect of eravacycline and tigecycline against carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae. J Infect Public Health, 2024, 17(5): 929-937.
|
42. |
Connors KP, Housman ST, Pope JS, et al. Phase Ⅰ, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother, 2014, 58(4): 2113-2118.
|
43. |
Alosaimy S, Molina KC, Claeys KC, et al. Early experience with eravacycline for complicated infections. Open Forum Infect Dis, 2020, 7(5): ofaa071. doi: 10.1093/ofid/ofaa071.
|
44. |
Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect, 2022, 28(4): 521-547.
|
45. |
Zeng M, Xia J, Zong Z, et al. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. J Microbiol Immunol Infect, 2023, 56(4): 653-671.
|
46. |
Tamma PD, Heil EL, Justo JA, et al. Infectious Diseases Society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections. Clin Infect Dis, 2024: ciae403. doi: 10.1093/cid/ciae403.
|
47. |
Kunz Coyne AJ, Alosaimy S, Lucas K, et al. Eravacycline, the first four years: health outcomes and tolerability data for 19 hospitals in 5 U. S. regions from 2018 to 2022. Microbiol Spectr, 2024, 12(1): e0235123. doi: 10.1128/spectrum.02351-23.
|
48. |
Zhang Y, Liu D, Liu Y, et al. Detection and characterization of eravacycline heteroresistance in clinical bacterial isolates. Front Microbiol, 2024, 15: 1332458. doi: 10.3389/fmicb.2024.1332458.
|
49. |
Li X, Zhang J, Wang J, et al. Activities of aztreonam in combination with several novel β-lactam-β-lactamase inhibitor combinations against carbapenem-resistant Klebsiella pneumoniae strains coproducing KPC and NDM. Front Microbiol, 2024, 15: 1210313. doi: 10.3389/fmicb.2024.1210313.
|
50. |
Gao H, Liu Y, Wang R, et al. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine, 2020, 51: 102599. doi: 10.1016/j.ebiom.2019.102599.
|
51. |
van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis, 2018, 66(2): 163-171.
|
52. |
Tüzemen NÜ, Önal U, Merdan O, et al. Synergistic antibacterial activity of ceftazidime-avibactam in combination with colistin, gentamicin, amikacin, and fosfomycin against carbapenem-resistant Klebsiella pneumoniae. Sci Rep, 2024, 14(1): 17567. doi: 10.1038/s41598-024-67347-5.
|
53. |
Hou SY, Wu D, Feng XH. Polymyxin monotherapy versus polymyxin-based combination therapy against carbapenem-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. J Glob Antimicrob Resist, 2020, 23: 197-202.
|
54. |
Li Y, Cui L, Xue F, et al. Synergism of eravacycline combined with other antimicrobial agents against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. J Glob Antimicrob Resist, 2022, 30: 56-59.
|
55. |
Xu C, Wei X, Jin Y, et al. Development of resistance to eravacycline by Klebsiella pneumoniae and collateral sensitivity-guided design of combination therapies. Microbiol Spectr, 2022, 10(5): e0139022. doi: 10.1128/spectrum.01390-22.
|
56. |
Scott CJ, Zhu E, Jayakumar RA, et al. Efficacy of eravacycline versus best previously available therapy for adults with pneumonia due to difficult-to-treat resistant (DTR) Acinetobacter baumannii. Ann Pharmacother, 2022, 56(12): 1299-1307.
|
57. |
Avery LM, Nicolau DP. Assessing the in vitro activity of ceftazidime/avibactam and aztreonam among carbapenemase-producing Enterobacteriaceae: defining the zone of hope. Int J Antimicrob Agents, 2018, 52(5): 688-691.
|
58. |
Al Musawa M, Bleick CR, Herbin SR, et al. Aztreonam-avibactam: the dynamic duo against multidrug-resistant gram-negative pathogens. Pharmacotherapy, 2024, 44(12): 927-938.
|
59. |
Falcone M, Daikos GL, Tiseo G, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis, 2021, 72(11): 1871-1878.
|
60. |
Tamma PD, Aitken SL, Bonomo RA, et al. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P.aeruginosa). Clin Infect Dis, 2022, 75(2): 187-212.
|
61. |
刘志盈, 陈云波, 嵇金如, 等. 2022年全国血流感染细菌耐药监测报告: 革兰阴性菌. 中华临床感染病杂志, 2024, 17(1): 42-57.
|
62. |
Wu Y, Yu W, Chu X, et al. Effect of ceftazidime-avibactam combined with different antimicrobials against carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr, 2024, 12(6): e0010724. doi: 10.1128/spectrum.00107-24.
|
63. |
Taha R, Kader O, Shawky S, et al. Ceftazidime-avibactam plus aztreonam synergistic combination tested against carbapenem-resistant Enterobacterales characterized phenotypically and genotypically: a glimmer of hope. Ann Clin Microbiol Antimicrob, 2023, 22(1): 21. doi: 10.1186/s12941-023-00573-3.
|
64. |
Rodrigo E, López-Hoyos M, Corral M, et al. ImmuKnow as a diagnostic tool for predicting infection and acute rejection in adult liver transplant recipients: a systematic review and meta-analysis. Liver Transpl, 2012, 18(10): 1245-1253.
|
65. |
Demirkiran A, Bosma BM, Kok A, et al. Allosuppressive donor CD4+CD25+ regulatory T cells detach from the graft and circulate in recipients after liver transplantation. J Immunol, 2007, 178(10): 6066-6072.
|
66. |
Stenard F, Nguyen C, Cox K, et al. Decreases in circulating CD4+CD25hiFOXP3+ cells and increases in intragraft FOXP3+ cells accompany allograft rejection in pediatric liver allograft recipients. Pediatr Transplant, 2009, 13(1): 70-80.
|
67. |
He Q, Fan H, Li JQ, et al. Decreased circulating CD4+CD25highFoxp3+ T cells during acute rejection in liver transplant patients. Transplant Proc, 2011, 43(5): 1696-1700.
|
68. |
Romano M, Tung SL, Smyth LA, et al. Treg therapy in transplantation: a general overview. Transpl Int, 2017, 30(8): 745-753.
|
69. |
Thorgersen EB, Barratt-Due A, Haugaa H, et al. The role of complement in liver injury, regeneration, and transplantation. Hepatology, 2019, 70(2): 725-736.
|
70. |
Michielsen LA, van Zuilen AD, Muskens IS, et al. Complement polymorphisms in kidney transplantation: critical in graft rejection? Am J Transplant, 2017, 17(8): 2000-2007.
|
71. |
Kwon HM, Moon YJ, Jung KW, et al. Neutrophil-to-lymphocyte ratio is a predictor of early graft dysfunction following living donor liver transplantation. Liver Int, 2019, 39(8): 1545-1556.
|
72. |
Vandevoorde K, Ducreux S, Bosch A, et al. Prevalence, risk factors, and impact of donor‐specific alloantibodies after adult liver transplantation. Liver Transpl, 2018, 24(8): 1091-1100.
|
73. |
Caballero Marcos A, Díaz Ruiz R, Romero Cristóbal M, et al. Long-term outcomes and clinical impact of anti-HLA donor-specific antibodies (DSA) after liver transplantation: a prospective study in a pilot cohort. Rev Esp Enferm Dig, 2021, 113(8): 557-562.
|
74. |
Cvetkovski F, Hexham JM, Berglund E. Strategies for liver transplantation tolerance. Int J Mol Sci, 2021, 22(5): 2253. doi: 10.3390/ijms22052253.
|
75. |
Truong DQ, Bourdeaux C, Wieërs G, et al. The immunological monitoring of kidney and liver transplants in adult and pediatric recipients. Transpl Immunol, 2009, 22(1-2): 18-27.
|
76. |
Montero N, Farouk S, Gandolfini I, et al. Pretransplant donor-specific IFNγ ELISPOT as a predictor of graft rejection: a diagnostic test accuracy meta-analysis. Transplant Direct, 2019, 5(5): e451. doi: 10.1097/TXD.0000000000000886.
|
77. |
Traska AK, Nowacki TM, Vollenberg R, et al. Immunomonitoring via ELISPOT assay reveals attenuated T-cell immunity to CMV in immunocompromised liver-transplant patients. Cells, 2024, 13(9): 741. doi: 10.3390/cells13090741.
|
78. |
Gliga S, Fiedler M, Dornieden T, et al. Comparison of three cellular assays to predict the course of CMV infection in liver transplant recipients. Vaccines (Basel), 2021, 9(2): 88. doi: 10.3390/vaccines9020088.
|