1. |
Halwani R, Al-Muhsen S, Hamid Q. Airway remodeling in asthma. Curr Opin Pharmacol, 2010, 10:236-245.
|
2. |
Al-Muhsen S, Johnson JR, Hamid Q. Remodeling in asthma. J Allergy Clin Immunol, 2011, 128:451-464.
|
3. |
Kudo M, Ishigatsubo Y, Aoki I. Pathology of asthma. Front Microbiol, 2013, 4:263.
|
4. |
Edwards HV, Christian F, Baillie GS. cAMP:novel concepts in compartmentalised signalling. Semin Cell Dev Biol, 2012, 23:181-190.
|
5. |
Hewer RC, Sala-Newby GB, Wu YJ, et al. PKA and Epac synergistically inhibit smooth muscle cell proliferation. J Mol Cell Cardiol, 2011, 50:87-98.
|
6. |
Kassel KM, Wyatt TA, Panettieri RA Jr, et al. Inhibition of human airway smooth muscle cell proliferation by beta 2-adrenergic receptors and cAMP is PKA independent:evidence for EPAC involvement. Am J Physiol Lung Cell Mol Physiol, 2008, 294:L131-138.
|
7. |
Roscioni SS, Maarsingh H, Elzinga CR, et al. Epac as a novel effector of airway smooth muscle relaxation. J Cell Mol Med, 2011, 15:1551-1563.
|
8. |
Ayabe S, Kida T, Hori M, et al. Prostaglandin D2 inhibits collagen secretion from lung fibroblasts by activating the DP receptor. J Pharmacol Sci, 2013, 121:312-317.
|
9. |
Haag S, Warnken M, Juergens UR, et al. Role of Epac1 in mediating anti-proliferative effects of prostanoid EP(2) receptors and cAMP in human lung fibroblasts. Naunyn Schmiedebergs Arch Pharmacol, 2008, 378:617-630.
|
10. |
Holz GG, Kang G, Harbeck M, et al. Cell physiology of cAMP sensor Epac. J Physiol, 2006, 577:5-15.
|
11. |
Gloerich M, Bos JL. Epac:defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol, 2010, 50:355-375.
|
12. |
Bos JL. Epac proteins:multi-purpose cAMP targets. Trends Biochem Sci, 2006, 31:680-686.
|
13. |
Roscioni SS, Elzinga CR, Schmidt M. Epac:effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol, 2008, 377:345-357.
|
14. |
Monceau V, Llach A, Azria D, et al. Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis. Radiother Oncol, 2014, 111:63-71.
|
15. |
Olmedo I, Munoz C, Guzman N, et al. EPAC expression and function in cardiac fibroblasts and myofibroblasts. Toxicol Appl Pharmacol, 2013, 272:414-422.
|
16. |
Insel PA, Murray F, Yokoyama U, et al. cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol, 2012, 166:447-456.
|
17. |
Yan H, Deshpande DA, Misior AM, et al. Anti-mitogenic effects of beta-agonists and PGE2 on airway smooth muscle are PKA dependent. FASEB J, 2011, 25:389-397.
|
18. |
Misior AM, Yan H, Pascual RM, et al. Mitogenic effects of cytokines on smooth muscle are critically dependent on protein kinase A and are unmasked by steroids and cyclooxygenase inhibitors. Mol Pharmacol, 2007, 73:566-574.
|
19. |
Musa NL, Ramakrishnan M, Li J, et al. Forskolin inhibits cyclin D1 expression in cultured airway smooth-muscle cells. Am J Respir Cell Mol Biol, 1999, 20:352-358.
|
20. |
Roscioni SS, Prins AG, Elzinga CR, et al. Protein kinase A and the exchange protein directly activated by cAMP (Epac) modulate phenotype plasticity in human airway smooth muscle. Br J Pharmacol, 2011, 164:958-969.
|
21. |
Roscioni SS, Dekkers BG, Prins AG, et al. cAMP inhibits modulation of airway smooth muscle phenotype via the exchange protein activated by cAMP (Epac) and protein kinase A. Br J Pharmacol, 2011, 162:193-209.
|
22. |
Roscioni SS, Kistemaker LE, Menzen MH, et al. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells. Respir Res, 2009, 10:88.
|
23. |
Oldenburger A, Roscioni SS, Jansen E, et al. Anti-inflammatory role of the cAMP effectors Epac and PKA:implications in chronic obstructive pulmonary disease. PLoS One, 2012, 7:e31574.
|
24. |
Kolodsick JE, Peters-Golden M, Larios J, et al. Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol, 2003, 29:537-544.
|
25. |
Liu X, Ostrom RS, Insel PA. cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am J Physiol Cell Physiol, 2004, 286:C1089-1099.
|
26. |
Dunkern TR, Feurstein D, Rossi GA, et al. Inhibition of TGF-beta induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase. Eur J Pharmacol, 2007, 572:12-22.
|
27. |
Huang SK, Wettlaufer SH, Chung J, et al. Prostaglandin E2 inhibits specific lung fibroblast functions via selective actions of PKA and Epac-1. Am J Respir Cell Mol Biol, 2008, 39:482-489.
|
28. |
Lamyel F, Warnken-Uhlich M, Seemann WK, et al. The beta2-subtype of adrenoceptors mediates inhibition of pro-fibrotic events in human lung fibroblasts. Naunyn Schmiedebergs Arch Pharmacol, 2011, 384:133-145.
|
29. |
Yokoyama U, Patel HH, Lai NC, et al. The cyclic AMP effector Epac integrates pro-and anti-fibrotic signals. Proc Natl Acad Sci U S A, 2008, 105:6386-6391.
|
30. |
Ulucan C, Wang X, Baljinnyam E, et al. Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol, 2007, 293:H1662-1672.
|
31. |
Davies DE. The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc, 2009, 6:678-682.
|
32. |
Reeves SR, Kolstad T, Lien TY, et al. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol, 2014, 134:663-670.
|
33. |
Nguyen LP, Lin R, Parra S, et al. Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci U S A, 2009, 106:2435-2440.
|
34. |
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac):a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev, 2013, 65:670-709.
|