1. |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
|
2. |
中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018 年版). 中华结核和呼吸杂志, 2018, 41(10): 763-771.
|
3. |
National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
4. |
Rubin GD, Roos JE, Tall M, et al. Characterizing search, recognition, and decision in the detection of lung nodules on CT scans: elucidation with eye tracking. Radiology, 2015, 274(1): 276-286.
|
5. |
Armato SG, Roberts RY, Kocherginsky M, et al. Assessment of radiologist performance in the detection of lung nodules: dependence on the definition of "truth". Acad Radiol, 2009, 16(1): 28-38.
|
6. |
崔云, 马大庆. 肺结节的 CT 计算机辅助检测和诊断的基本方法和应用. 中国医学影像术, 2007, 23(3): 469-472.
|
7. |
Jacobs C, van Rikxoort EM, Twellmann T, et al. Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Med Image Anal, 2014, 18(2): 374-384.
|
8. |
Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep, 2016, 6: 24454.
|
9. |
Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics, 2017, 37(7): 2113-2131.
|
10. |
LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput, 1989, 1(4): 541-551.
|
11. |
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev, 1958, 65(6): 386-408.
|
12. |
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern, 1980, 36(4): 193-202.
|
13. |
Lécun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278-2324.
|
14. |
Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification. IEEE Computer Society Conference, 2015, 1: 539-546.
|
15. |
Dan CC, Ueli M, Luca MG, et al. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput, 2010, 22(12): 3207-3220.
|
16. |
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM, 2012, 60(2): 84-90.
|
17. |
Sermanet P, Eigen D, Zhang X, et al. OverFeat: integrated recognition, localization and detection using convolutional networks. Proc ICLR, 2015, arXiv: 1312.6229v4. https://arxiv.org/pdf/1312.6229.pdf.
|
18. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proc ICLR, 2015, arXiv: 1409.1556v6. https://arxiv.org/pdf/1409.1556v6.pdf.
|
19. |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015: 1-9. https://ieeexplore.ieee.org/document/7298594. doi: 10.1109/CVPR.2015.7298594.
|
20. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016: 770-778. https://ieeexplore.ieee.org/document/7780459. doi: 10.1109/CVPR.2016.90.
|
21. |
Huang G, Liu Z, Laurens VDM, et al. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017: 2261-2269. https://ieeexplore.ieee.org/document/8099726. doi: 10.1109/CVPR.2017.243.
|
22. |
Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell, 2016, 38(1): 142-158.
|
23. |
He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2014, 37(9): 1904-1916.
|
24. |
Girshick R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015: 1440-1448. doi: 10.1109/ICCV.2015.169.
|
25. |
Ruhan S, Owens W, Wiegand R, et al. Intervertebral disc detection in X-ray images using faster R-CNN. Conf Proc IEEE Eng Med Biol Soc, 2017: 564-567.
|
26. |
Dai JF, Li Y, He KM, et al. R-FCN: object detection via region-based fully convolutional networks. 2016. https://arxiv.org/pdf/1605.06409.pdf.
|
27. |
Dai JF, Qi HZ, Xiong YW, et al. Deformable convolutional networks. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, italy, 2017: 764-773. doi: 10.1109/ICCV.
|
28. |
Liu ST, Huang D, Wang YH. Receptive field block net for accurate and fast object detection. 2017. doi: 10.1007/978-3-030-01252-6_24.
|
29. |
Al-Masni MA, Al-Antari MA, Park JM, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput Meth Prog Bio, 2018, 157: 85-94.
|
30. |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector. European Conference on Computer Vision (ECCV) 2016: 21-37. https://link.springer.com/chapter/10.1007%2F978-3-319-46448-0_2. doi: 10.1007/978-3-319-46448-0_2.
|
31. |
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep, 2016, 6: 26286.
|
32. |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651.
|
33. |
Somasundaram SK, Alli P. A machine learning ensemble classifier for early prediction of diabetic retinopathy. J Med Syst, 2017, 41(12): 201.
|
34. |
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536.
|
35. |
Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput, 2006, 18(7): 1527-1554.
|
36. |
Bengio Y, Lamblin P, Dan P, et al. Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst, 2007, 19: 153-160.
|
37. |
Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning Pages. ACM, 2008: 1096-1103. https://dl.acm.org/citation.cfm?doid=1390156.1390294. doi: 10.1145/1390156.1390294.
|
38. |
Hinton G. A practical guide to training restricted Boltzmann machines. Momentum, 2010, 9(1): 926.
|
39. |
Ginneken VB. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol, 2017, 10(1): 23-32.
|
40. |
Li W, Cao P, Zhao DZ, et al. Pulmonary nodule classification with deep convolutional neural networks on computed tomography images. Comput Math Method Med, 2016: 6215085.
|
41. |
Gruetzemacher R, Gupta A. Using deep learning for pulmonary nodule detection & diagnosis. Twenty-second Americas conference on information systems, San Diego 2016. https://aisel.aisnet.org/amcis2016/Intel/Presentations/3/.
|
42. |
Hussein S, Gillies R, Cao K, et al. TumorNet: lung nodule characterization using multi-view convolutional neural network with gaussian process. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, 2017: 1007-1010. https://ieeexplore.ieee.org/document/7950686. doi: 10.1109/ISBI.2017.7950686.
|
43. |
Nibali A, He Z, Wollersheim D. Pulmonary nodule classification with deep residual networks. Int J Comput Ass Rad, 2017, 12(10): 1799-1808.
|
44. |
Song QZ, Zhao L, Luo XK, et al. Using deep learning for classification of lung nodules on computed tomography images. J Healthc Eng, 2017: 8314740.
|
45. |
侍新, 谢世朋, 李海波. 基于卷积神经网络检测肺结节. 中国医学影像技术, 2018, 34(6): 934-939.
|
46. |
吕晓琪, 吴凉, 谷宇, 等. 基于三维卷积神经网络的低剂量 CT 肺结节检测. 光学精密工程, 2018, 26(5): 213-220.
|
47. |
巩萍, 王姗姗, 罗举建. 基于稀疏自编码神经网络的肺结节特征提取及良恶性分类. 医疗卫生装备, 2015, 36(12): 7-10.
|
48. |
赵鑫, 强彦, 强梓林, 等. 基于局部感受野和半监督深度自编码的肺结节检测方法. 科学技术与工程, 2017, 17(33): 125-130.
|
49. |
张婷, 赵涓涓, 罗嘉滢, 等. 基于多视角深度信念网络的肺结节识别方法. 科学技术与工程, 2018, 18(5): 92-98.
|
50. |
杨佳玲, 赵涓涓, 强彦, 等. 基于深度信念网络的肺结节良恶性分类. 科学技术与工程, 2016, 16(32): 69-74.
|
51. |
Sun WQ, Zheng B, Qian W. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med, 2017, 89: 530-539.
|
52. |
Hua KL, Hsu CH, Hidayati SC, et al. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther, 2015, 8: 2015-2022.
|