Citation: 李锋, 周新. 慢性阻塞性肺疾病的发病机制研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2019, 18(1): 88-92. doi: 10.7507/1671-6205.201803050 Copy
1. | Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet, 2007, 370(9589): 741-750. |
2. | Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med, 2017, 195(5): 557-582. |
3. | Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet, 2011, 378(9795): 1015-1026. |
4. | Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2016, 138(1): 16-27. |
5. | Eapen MS, Myers S, Walters EH, et al. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med, 2017, 11(10): 827-839. |
6. | Russell RE, Thorley A, Culpitt SV, et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol, 2002, 283(4): L867-L873. |
7. | Belchamber KBR, Donnelly LE. Macrophage dysfunction in respiratory disease. Results Probl Cell Differ, 2017, 62: 299-313. |
8. | Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2018, 13: 335-349. |
9. | Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med, 2004, 1(1): e8. |
10. | Pridgeon C, Bugeon L, Donnelly L, et al. Regulation of IL-17 in chronic inflammation in the human lung. Clin Sci (Lond), 2011, 120(12): 515-524. |
11. | Vassallo R, Walters PR, Lamont J, et al. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. Respir Res, 2010, 11(1): 45. |
12. | Kanazawa H, Tochino Y, Asai K, et al. Simultaneous assessment of hepatocyte growth factor and vascular endothelial growth factor in epithelial lining fluid from patients with COPD. Chest, 2014, 146(5): 1159-1165. |
13. | Vallath S, Hynds RE, Succony L, et al. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J, 2014, 44(2): 513-522. |
14. | Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest, 2013, 144(1): 266-273. |
15. | McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med, 2017, 6(2): 21. |
16. | Piantadosi CA, Suliman HB. Mitochondrial dysfunction in lung pathogenesis. Annu Rev Physiol, 2017, 79: 495-515. |
17. | Ito S, Araya J, Kurita Y, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 2015, 11(3): 547-559. |
18. | Ahmad T, Sundar IK, Lerner CA, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J, 2015, 29(7): 2912-2929. |
19. | Meyer A, Zoll J, Charles AL, et al. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol, 2013, 98(6): 1063-1078. |
20. | Liu SF, Kuo HC, Tseng CW, et al. Leukocyte mitochondrial DNA copy number is associated with chronic obstructive pulmonary disease. PLoS One, 2015, 10(9): e0138716. |
21. | MacNee W. Is chronic obstructive pulmonary disease an accelerated aging disease?. Ann Am Thorac Soc, 2016, 3(5): S429-S437. |
22. | Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med, 2015, 373(2): 111-122. |
23. | Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol, 2004, 31(6): 643-649. |
24. | López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell, 2013, 153(6): 1194-1217. |
25. | Ojo O, Lagan AL, Rajendran V, et al. Pathological changes in the COPD lung mesenchyme-novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther, 2014, 29(2): 121-128. |
26. | Sohal SS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig, 2017, 55(2): 104-113. |
27. | Sohal SS. Endothelial to mesenchymal transition (EndMT): an active process in chronic obstructive pulmonary disease (COPD)?. Respir Res, 2016, 17: 20. |
28. | Coll-Bonfill N, Musri MM, Ivo V, et al. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodeling. Am J Stem Cells, 2015, 4(1): 13-21. |
29. | Camicia G, Pozner R, de Larrañaga G. Neutrophil extracellular traps in sepsis. Shock, 2014, 42(4): 286-294. |
30. | Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing?. Front Immunol, 2016, 7: 311. |
31. | Storisteanu DM, Pocock JM, Cowburn AS, et al. Evasion of neutrophil extracellular traps by respiratory pathogens. Am J Respir Cell Mol Biol, 2017, 56(4): 423-431. |
32. | Liu T, Wang FP, Wang G, et al. Role of neutrophil extracellular traps in asthma and chronic obstructive pulmonary disease. Chin Med J (Engl), 2017, 130(6): 730-736. |
33. | Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013, 200(4): 373-383. |
34. | Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci, 2011, 68(19): 3149-3163. |
35. | Cordazzo C, Petrini S, Neri T, et al. Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization. Inflamm Res, 2014, 63(7): 539-547. |
36. | Li CJ, Liu Y, Chen Y, et al. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol, 2013, 182(5): 1552-1562. |
37. | Kadota T, Fujita Y, Yoshioka Y, et al. Extracellular vesicles in chronic obstructive pulmonary disease. Int J Mol Sci, 2016, 17(11): 1801. |
38. | Kim YS, Choi EJ, Lee WH, et al. Extracellular vesicles, especially derived from Gram-negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses. Clin Exp Allergy, 2013, 43(4): 443-454. |
39. | Cloonan SM, Mumby S, Adcock IM, et al. The " Iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2017, 196(9): 1103-1112. |
40. | Ali MK, Kim RY, Karim R, et al. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol, 2017, 88: 181-195. |
41. | Chappell SL, Daly L, Lotya J, et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. BMC Med Genet, 2011, 12: 24. |
42. | Zhou HX, Yang J, Li DX, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet, 2012, 57(11): 738-746. |
43. | Yuan CH, Chang D, Lu GM, et al. Genetic polymorphism and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1385-1393. |
44. | Deng XW, Yuan CH, Chang D. Interactions between single nucleotide polymorphism of SERPINA1 gene and smoking in association with COPD: a case-control study. Int J Chron Obstruct Pulmon Dis, 2017, 12: 259-265. |
45. | Wolf L, Herr C, Niederstrasser J, et al. Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke. PLoS One, 2017, 12(7): e180092. |
46. | Li Y, Cho MH, Zhou X. What do polymorphisms tell us about the mechanisms of COPD?. Clin Sci (Lond), 2017, 131(24): 2847-2863. |
- 1. Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet, 2007, 370(9589): 741-750.
- 2. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med, 2017, 195(5): 557-582.
- 3. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet, 2011, 378(9795): 1015-1026.
- 4. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2016, 138(1): 16-27.
- 5. Eapen MS, Myers S, Walters EH, et al. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med, 2017, 11(10): 827-839.
- 6. Russell RE, Thorley A, Culpitt SV, et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol, 2002, 283(4): L867-L873.
- 7. Belchamber KBR, Donnelly LE. Macrophage dysfunction in respiratory disease. Results Probl Cell Differ, 2017, 62: 299-313.
- 8. Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2018, 13: 335-349.
- 9. Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med, 2004, 1(1): e8.
- 10. Pridgeon C, Bugeon L, Donnelly L, et al. Regulation of IL-17 in chronic inflammation in the human lung. Clin Sci (Lond), 2011, 120(12): 515-524.
- 11. Vassallo R, Walters PR, Lamont J, et al. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. Respir Res, 2010, 11(1): 45.
- 12. Kanazawa H, Tochino Y, Asai K, et al. Simultaneous assessment of hepatocyte growth factor and vascular endothelial growth factor in epithelial lining fluid from patients with COPD. Chest, 2014, 146(5): 1159-1165.
- 13. Vallath S, Hynds RE, Succony L, et al. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J, 2014, 44(2): 513-522.
- 14. Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest, 2013, 144(1): 266-273.
- 15. McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med, 2017, 6(2): 21.
- 16. Piantadosi CA, Suliman HB. Mitochondrial dysfunction in lung pathogenesis. Annu Rev Physiol, 2017, 79: 495-515.
- 17. Ito S, Araya J, Kurita Y, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 2015, 11(3): 547-559.
- 18. Ahmad T, Sundar IK, Lerner CA, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J, 2015, 29(7): 2912-2929.
- 19. Meyer A, Zoll J, Charles AL, et al. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol, 2013, 98(6): 1063-1078.
- 20. Liu SF, Kuo HC, Tseng CW, et al. Leukocyte mitochondrial DNA copy number is associated with chronic obstructive pulmonary disease. PLoS One, 2015, 10(9): e0138716.
- 21. MacNee W. Is chronic obstructive pulmonary disease an accelerated aging disease?. Ann Am Thorac Soc, 2016, 3(5): S429-S437.
- 22. Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med, 2015, 373(2): 111-122.
- 23. Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol, 2004, 31(6): 643-649.
- 24. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell, 2013, 153(6): 1194-1217.
- 25. Ojo O, Lagan AL, Rajendran V, et al. Pathological changes in the COPD lung mesenchyme-novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther, 2014, 29(2): 121-128.
- 26. Sohal SS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig, 2017, 55(2): 104-113.
- 27. Sohal SS. Endothelial to mesenchymal transition (EndMT): an active process in chronic obstructive pulmonary disease (COPD)?. Respir Res, 2016, 17: 20.
- 28. Coll-Bonfill N, Musri MM, Ivo V, et al. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodeling. Am J Stem Cells, 2015, 4(1): 13-21.
- 29. Camicia G, Pozner R, de Larrañaga G. Neutrophil extracellular traps in sepsis. Shock, 2014, 42(4): 286-294.
- 30. Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing?. Front Immunol, 2016, 7: 311.
- 31. Storisteanu DM, Pocock JM, Cowburn AS, et al. Evasion of neutrophil extracellular traps by respiratory pathogens. Am J Respir Cell Mol Biol, 2017, 56(4): 423-431.
- 32. Liu T, Wang FP, Wang G, et al. Role of neutrophil extracellular traps in asthma and chronic obstructive pulmonary disease. Chin Med J (Engl), 2017, 130(6): 730-736.
- 33. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013, 200(4): 373-383.
- 34. Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci, 2011, 68(19): 3149-3163.
- 35. Cordazzo C, Petrini S, Neri T, et al. Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization. Inflamm Res, 2014, 63(7): 539-547.
- 36. Li CJ, Liu Y, Chen Y, et al. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol, 2013, 182(5): 1552-1562.
- 37. Kadota T, Fujita Y, Yoshioka Y, et al. Extracellular vesicles in chronic obstructive pulmonary disease. Int J Mol Sci, 2016, 17(11): 1801.
- 38. Kim YS, Choi EJ, Lee WH, et al. Extracellular vesicles, especially derived from Gram-negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses. Clin Exp Allergy, 2013, 43(4): 443-454.
- 39. Cloonan SM, Mumby S, Adcock IM, et al. The " Iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2017, 196(9): 1103-1112.
- 40. Ali MK, Kim RY, Karim R, et al. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol, 2017, 88: 181-195.
- 41. Chappell SL, Daly L, Lotya J, et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. BMC Med Genet, 2011, 12: 24.
- 42. Zhou HX, Yang J, Li DX, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet, 2012, 57(11): 738-746.
- 43. Yuan CH, Chang D, Lu GM, et al. Genetic polymorphism and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1385-1393.
- 44. Deng XW, Yuan CH, Chang D. Interactions between single nucleotide polymorphism of SERPINA1 gene and smoking in association with COPD: a case-control study. Int J Chron Obstruct Pulmon Dis, 2017, 12: 259-265.
- 45. Wolf L, Herr C, Niederstrasser J, et al. Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke. PLoS One, 2017, 12(7): e180092.
- 46. Li Y, Cho MH, Zhou X. What do polymorphisms tell us about the mechanisms of COPD?. Clin Sci (Lond), 2017, 131(24): 2847-2863.
-
Previous Article
肺浸润性黏液腺癌一例 -
Next Article
肺部超声评分在呼吸重症疾病中的应用