1. |
Raghu G, Collard HR, Egan JJ, et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. Am J Respir Crit Care Med, 2011, 183(6): 788-824.
|
2. |
Bonella F, Costabel U. Biomarkers in connective tissue disease-associated interstitial lung disease. Semin Respir Crit Care Med, 2014, 35(2): 181.
|
3. |
朱晨, 赵亚滨, 孔灵菲, 等. 涎液化糖链蛋白 6 在特发性肺纤维化患者支气管肺泡灌洗液和血清中的表达及临床意义. 中国呼吸与危重监护杂志, 2015, 14(3): 225-228.
|
4. |
Xu L, Bian W, Gu XH, et al. Differing expression of cytokines and tumor markers in combined pulmonary fibrosis and emphysema compared to emphysema and pulmonary fibrosis. COPD, 2017, 14(2): 245-250.
|
5. |
Sokai A, Handa T, Tanizawa K, et al. Matrix metalloproteinase-10: a novel biomarker for idiopathic pulmonary fibrosis. Respir Res, 2015, 16(1): 120.
|
6. |
Morais A, Beltrão M, Sokhatska O, et al. Serum metalloproteinases 1 and 7 in the diagnosis of idiopathic pulmonary fibrosis and other interstitial pneumonias. Respir Med, 2015, 109(8): 1063-1068.
|
7. |
Hara A, Sakamoto N, Ishimatsu Y, et al. S100A9 in BALF is a candidate biomarker of idiopathic pulmonary fibrosis. Respir Med, 2012, 106(4): 571-580.
|
8. |
Seung-Ick C, Ryerson CJ, Lee JS, et al. Cleaved cytokeratin-18 is a mechanistically informative biomarker in idiopathic pulmonary fibrosis. Respir Res, 2012, 13(1): 1-9.
|
9. |
Prasse A, Probst C, Bargagli E, et al. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2009, 179(8): 717-723.
|
10. |
White ES, Meng X, Murray S, et al. Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias. Am J Respir Crit Care Med, 2016, 194(10): 1242.
|
11. |
中华医学会呼吸病学分会间质性肺疾病学组. 特发性肺纤维化诊断和治疗中国专家共识. 中华结核和呼吸杂志, 2016, 39(6): 427-432.
|
12. |
Ohshimo S, Ishikawa N, Horimasu Y, et al. Baseline KL-6 predicts increased risk for acute exacerbation of idiopathic pulmonary fibrosis. Respir Med, 2014, 108(7): 1031.
|
13. |
Kakugawa T, Yokota S, Ishimatsu Y, et al. Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis. Cell Stress Chaperones, 2013, 18(5): 581-590.
|
14. |
Collard HR, Calfee CS, Wolters PJ, et al. Plasma biomarker profiles in acute exacerbation of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2010, 299(1): L3.
|
15. |
Kai W, Ju Q, Jing C, et al. Impact of serum SP-A and SP-D levels on comparison and prognosis of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Medicine (Baltimore), 2017, 96(23): e7083.
|
16. |
Depianto DJ, Chandriani S, Abbas AR, et al. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax, 2015, 70(1): 48-56.
|
17. |
Vuga LJ, Tedrow JR, Pandit KV, et al. C-X-C motif chemokine 13 (CXCL13) is a prognostic biomarker of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2014, 189(8): 966.
|
18. |
Reilkoff RA, Peng H, Murray LA, et al. Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-β1-induced pulmonary fibrosis. Am J Respir Crit Care Med, 2013, 187(2): 180.
|
19. |
Hou Z, Ye Q, Qiu M, et al. Increased activated regulatory T cells proportion correlate with the severity of idiopathic pulmonary fibrosis. Respir Res, 2017, 18(1): 170.
|
20. |
Wakamatsu K, Nagata N, Kumazoe H, et al. Prognostic value of serial serum KL-6 measurements in patients with idiopathic pulmonary fibrosis. Respir Invest, 2017, 55(1): 16.
|
21. |
Natsuizaka M, Chiba H, Kuronuma K, et al. Epidemiologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. Am J Respir Crit Care Med, 2014, 190(7): 773-779.
|
22. |
Sokai A, Tanizawa K, Handa T, et al. Importance of serial changes in biomarkers in idiopathic pulmonary fibrosis. ERJ Open Res, 2017, 3(3): 00019-2016.
|
23. |
Kinder BW, Brown KK, McCormack FX, et al. Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest, 2009, 135(6): 1557-1563.
|
24. |
Takahashi H, Shiratori M, Kanai A, et al. Monitoring markers of disease activity for interstitial lung diseases with serum surfactant proteins A and D. Respirology, 2006, 11(Suppl): S51-S54.
|
25. |
Stanley SE, Armanios M. Short telomeres: a repeat offender in IPF. Lancet Respir Med, 2014, 2(7): 513.
|
26. |
Dai J, Cai H, Zhuang Y, et al. Telomerase gene mutations and telomere length shortening in patients with idiopathic pulmonary fibrosis in a Chinese population. Respirology, 2015, 20(1): 122-128.
|
27. |
Dai J, Cai H, Li H, et al. Association between telomere length and survival in patients with idiopathic pulmonary fibrosis. Respirology, 2015, 20(6): 947-952.
|
28. |
Tzouvelekis A, Herazo-Maya JD, Slade M, et al. Validation of the prognostic value of MMP-7 in idiopathic pulmonary fibrosis. Respirology, 2017, 22(3): 486-493.
|
29. |
Okamoto M. Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J, 2011, 37(5): 1119.
|
30. |
Tajiri M, Okamoto M, Fujimoto K, et al. Serum level of periostin can predict long-term outcome of idiopathic pulmonary fibrosis. Respir Invest, 2015, 53(2): 73.
|
31. |
Ohta S, Okamoto M, Fujimoto K, et al. The usefulness of monomeric periostin as a biomarker for idiopathic pulmonary fibrosis. PloS One, 2017, 12(3): e0174547.
|
32. |
van Moorsel CH, Hoffman TW, van Batenburg AA, et al. Understanding idiopathic interstitial pneumonia: a gene-based review of stressed lungs. Biomed Res Int, 2015, 2015: 304186.
|
33. |
Jiang H, Hu Y, Shang L, et al. Association between MUC5B polymorphism and susceptibility and severity of idiopathic pulmonary fibrosis. Int J Clin Exp Pathol, 2015, 8(11): 14953-14958.
|
34. |
Peljto AL, Zhang Y, Fingerlin TE, et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA, 2013, 309(21): 2232-2239.
|
35. |
Molyneaux PL, Maher TM. Respiratory microbiome in IPF: cause, effect, or biomarker?. Lancet Respir Med, 2014, 2(7): 511-513.
|
36. |
Molyneaux PL, Cox MJ, Willisowen SA, et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2013, 190(8): 906-913.
|
37. |
Han MLK, Zhou Y, Murray S, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med, 2014, 2(7): 548-556.
|
38. |
Huang Y, Ma SF, Espindola MS, et al. Microbes are associated with host innate immune response in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2017, 196(2): 208.
|
39. |
Molyneaux PL, Cox MJ, Wells AU, et al. Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis. Respir Res, 2017, 18(1): 29.
|
40. |
Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest, 2015, 125(2): 521-538.
|
41. |
Aggarwal S, Mannam P, Zhang J. Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol, 2016, 311(2): L433.
|
42. |
Ryu C, Sun H, Gulati M, et al. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2017, 196(12): 1571-1581.
|