1. |
Lin JT, Wang WY, Chen P, et al. Prevalence and risk factors of asthma in mainland China: The CARE study. Respir Med, 2018, 137: 48-54.
|
2. |
Waljee AK, Rogers MAM, Lin P, et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ, 2017, 357: j1415.
|
3. |
von Hagens C, Walter-Sack I, Goeckenjan M, et al. Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2). Phytomedicine, 2019, 54: 140-148.
|
4. |
Chou S, Marousek G, Auerochs S, et al. The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Res, 2011, 92(2): 364-368.
|
5. |
Cao TH, Jin SG, Fei DS, et al. Artesunate protects against sepsis-induced lung injury via heme oxygenase-1 modulation. Inflammation, 2016, 39(2): 651-662.
|
6. |
Wagner JG, Jiang Q, Harkema JR, et al. Gamma-tocopherol prevents airway eosinophilia and mucous cell hyperplasia in experimentally induced allergic rhinitis and asthma. Clin Exp Allergy, 2008, 38(3): 501-511.
|
7. |
Ho WE, Cheng C, Peh HY, et al. Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radic Biol Med, 2012, 53(3): 498-507.
|
8. |
Cahn A, Boyce M, Mistry S, et al. Randomized trial of allergen-induced asthmatic response in smokers and non-smokers: effects of inhaled corticosteroids. Clin Exp Allergy, 2015, 45(10): 1531-1541.
|
9. |
Wang MY, Zhang YB, Xu MM, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model. Free Radic Biol Med, 2019, 134: 229-238.
|
10. |
Ng DS, Liao W, Tan WS, et al. Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice. Phytomedicine, 2014, 21(12): 1638-1644.
|
11. |
Cheng C, Ho WE, Goh FY, et al. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS One, 2011, 6(6): e20932.
|
12. |
Sibilano R, Frossi B, Pucillo CE. Mast cell activation: a complex interplay of positive and negative signaling pathways. Eur J Immunol, 2014, 44(9): 2558-2566.
|
13. |
Patou J, Holtappels G, Affleck K, et al. Syk-kinase inhibition prevents mast cell activation in nasal polyps. Rhinology, 2011, 49(1): 100-106.
|
14. |
Cheng C, Ng DS, Chan TK, et al. Anti-allergic action of anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy, 2013, 68(2): 195-203.
|
15. |
Ishijima Y, Ohmori S, Uenishi A, et al. GATA transcription factors are involved in IgE-dependent mast cell degranulation by enhancing the expression of phospholipase C-γ1. Genes Cells, 2012, 17(4): 285-301.
|
16. |
秧茂盛, 何康, 许卫铭. 青蒿琥酯对豚鼠哮喘模型抑制作用的研究. 中国药学杂志, 1999, 34(3): 160-161.
|
17. |
Deshpande DA, Wang WCH, McIlmoyle EL, et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med, 2010, 16(11): 1299-1304.
|
18. |
Pan S, Sharma P, Shah SD, et al. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2017, 313(1): L154-L165.
|
19. |
Sharma P, Yi R, Nayak AP, et al. Bitter taste receptor agonists mitigate features of allergic asthma in mice. Sci Rep, 2017, 7: 46166.
|
20. |
Wang Y, Wang A, Zhang M, et al. Artesunate attenuates airway resistance in vivo and relaxes airway smooth muscle cells in vitro via bitter taste receptor-dependent calcium signalling. Exp Physiol, 2019, 104(2): 231-243.
|
21. |
张艺凡, 王悦, 刘磊, 等. 青蒿琥酯对小鼠气道阻力及气道平滑肌牵张力的效应研究. 生物医学工程研究, 2017, 36(3): 191-196.
|
22. |
Hirst SJ, Martin JG, Bonacci JV, et al. Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol, 2004, 114(2 Suppl): S2-S17.
|
23. |
Tan SS, Ong B, Cheng C, et al. The antimalarial drug artesunate inhibits primary human cultured airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol, 2014, 50(2): 451-458.
|
24. |
黄发军, 詹光杰, 张宏. 青蒿琥酯对哮喘大鼠肺组织 TLR-4 及 TGF-β1 表达的影响. 中国医药生物技术, 2011, 6(4): 266-269.
|
25. |
姚孝昆, 万玉峰, 王保兰, 等. 青蒿琥酯抑制 TGF-β1-smad2/3 信号通路和改善支气管哮喘大鼠模型气道重塑关系的研究. 国际呼吸杂志, 2017, 37(19): 1441-1446.
|
26. |
Yang M, Du Y, Xu Z, et al. Functional effects of WNT1-inducible signaling pathway protein-1 on bronchial smooth muscle cell migration and proliferation in OVA-induced airway remodeling. Inflammation, 2016, 39(1): 16-29.
|
27. |
姚孝昆, 万玉峰, 郑玉龙. 青蒿琥酯抑制 Wnt/β-catenin 信号通路和改善大鼠哮喘模型气道炎症及气道重塑关系的研究. 医学研究杂志, 2017, 46(9): 151-156.
|
28. |
中华医学会呼吸病学分会哮喘学组 中国哮喘联盟. 重症哮喘诊断与处理中国专家共识. 中华结核和呼吸杂志, 2017, 40(11): 813-829.
|
29. |
Busse WW. Biological treatments for severe asthma: a major advance in asthma care. Allergol Int, 2019, 68(2): 158-166.
|
30. |
Shimoda T, Obase Y, Kishikawa R, et al. Influence of cigarette smoking on airway inflammation and inhaled corticosteroid treatment in patients with asthma. Allergy Asthma Proc, 2016, 37(4): 50-58.
|
31. |
Siewl QC, Wu SY, Ying S, et al. Cigarette smoking increases bronchial mucosal IL-17A expression in asthmatics, which acts in concert with environmental aeroallergens to engender neutrophilic inflammation. Clin Exp Allergy, 2017, 47(6): 740-750.
|
32. |
Barnes PJ. Glucocorticosteroids. Handb Exp Pharmacol, 2017, 237: 93-115.
|
33. |
Luo Q, Lin J, Zhang L, et al. The anti-malaria drug artesunate inhibits cigarette smoke and ovalbumin concurrent exposure-induced airway inflammation and might reverse glucocorticoid insensitivity. Int Immunopharmacol, 2015, 29(2): 235-245.
|
34. |
Kelly RS, Dahlin A, Mcgeachie MJ, et al. Asthma metabolomics and the potential for integrative omics in research and the clinic. Chest, 2017, 151(2): 262-277.
|
35. |
Pite H, Morais-Almeida M, Rocha SM. Metabolomics in asthma: where do we stand?. Curr Opin Pulm Med, 2018, 24(1): 94-103.
|
36. |
Khamis MM, Adamko DJ, Purves RW, et al. Quantitative determination of potential urine biomarkers of respiratory illnesses using new targeted metabolomic approach. Anal Chim Acta, 2019, 1047: 81-92.
|
37. |
Reinke SN, Gallart-Ayala H, Gómez C, et al. Metabolomics analysis identifies different metabotypes of asthma severity. Eur Respir J, 2017, 49(3): 1601740.
|
38. |
Pang ZQ, Wang GQ, Wang CZ, et al. Serum metabolomics analysis of asthma in different inflammatory phenotypes: a cross-sectional study in northeast China. Biomed Res Int, 2018, 2018: 2860521.
|
39. |
Malkawi AK, Alzoubi KH, Jacob M, et al. Metabolomics based profiling of dexamethasone side effects in rats. Front Pharmacol, 2018, 9: 46.
|
40. |
Ho WE, Xu YJ, Xu F, et al. Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol, 2013, 48(2): 204-211.
|
41. |
Ho WE, Xu YJ, Xu FG, et al. Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma. Metabolomics, 2015, 11(2): 380-390.
|
42. |
Ried JS, Baurecht H, Stuckler F, et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy, 2013, 68(5): 629-636.
|
43. |
Ravindra KC, Ho WE, Cheng C, et al. Untargeted proteomics and systems-based mechanistic investigation of artesunate in human bronchial epithelial cells. Chem Res Toxicol, 2015, 28(10): 1903-1913.
|