1. |
Zhao X, Kwan JYY, Yip K, et al. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov, 2019, 19(1): 57-75.
|
2. |
Zhang Y, Li X, Luo Z, et al. ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proc Natl Acad Sci USA, 2020, 117(6): 3083-3092.
|
3. |
Li C, Xu M.M, Wang K, et al Macrophage polarization and meta-inflammation. Transl Res, 2018, 191: 29-44.
|
4. |
Cakarova L, Marsh LM, Wilhelm J, et al. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte-macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am J Respir Crit Care Med, 2009, 180(6): 521-532.
|
5. |
Murray PJ. Macrophage polarization. Annu Rev Physiol, 2017, 79: 541-566.
|
6. |
Li S, Xu F, Zhang J, et al. Tumor-associated macrophages remodeling EMT and predicting survival in colorectal carcinoma. Oncoimmunology, 2018, 7(2): 74-82.
|
7. |
Gharib SA, Johnston LK, Huizar I, et al. MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis. J Leukoc Biol, 2014, 95(1): 9-18.
|
8. |
Schneberger D, Aharonson RK, Singh B. Monocyte and macrophage heterogeneity and Toll‐like receptors in the lung. Cell Tissue Res, 2011, 343(1): 501-506.
|
9. |
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol, 2020, 24(15): 123-147.
|
10. |
尹学红, 庞春燕, 白力, 等. 脂肪间充质干细胞促进 M1 型巨噬细胞向 M2 型巨噬细胞转化. 细胞与分子免疫学杂志, 2016, 32(3): 332-338.
|
11. |
Chu KA, Wang SY3, Yeh CC, et al. Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton's jelly. Theranostics, 2019, 9(22): 6646-6664.
|
12. |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol, 2018, 233(9): 6425-6440.
|
13. |
周宪宾. 巨噬细胞 M1/M2 极化分型的研究进展. 中国免疫学杂志, 2012, 22(10): 957-960.
|
14. |
Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol, 2011, 11(11): 750-61.
|
15. |
陈金艳, 田翔宇, 贺璐, 等. M2 型巨噬细胞向 M1 型巨噬细胞的转化及其意义. 中华实验外科杂志, 2016, 33(4): 953-955.
|
16. |
Gordon S, et al. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev, 2014, 262(1): 36-55.
|
17. |
宫甜甜, 黄少刚, 张玥, 等. 巨噬细胞的极化及功能调控. 解剖学报, 2017, 48(2): 106-109.
|
18. |
Redente EF, Keith RC, Janssen W, et al. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol, 2014, 50(4): 825-837.
|
19. |
Yu M, Wen S, Wang M, et al. TNF-α-secreting B cells contribute to myocardial fibrosis in dilated cardiomyopathy. J Clin Immunol, 2013, 33(5): 1002-1008.
|
20. |
Hou J, Ma T, Cao H, et al. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis. J Cell Physiol, 2018, 233(3): 2409-2419.
|
21. |
Cui Z, Liao J, Cheong N, et al. The receptor for hyaluronan-mediated motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol, 2018, 78-79: 255-271.
|
22. |
Bellamri N, Morzadec C, Joannes A, et al. Alteration of human macrophage phenotypes by the anti-fibrotic drug nintedanib. Int Immunopharmacol, 2019, 72: 112-123.
|
23. |
Zhu L, Fu X, Chen X, et al. M2 macrophages induce EMT through the TGF-beta/Smad2 signaling pathway. Cell Biol Int, 2017, 41(9): 960-968.
|
24. |
Wang L, Zhang Y, Zhang N, et al. Potential role of M2 macrophage polarization in ventilator-induced lung fibrosis. Int Immunopharmacol, 2019, 75: 105795.
|
25. |
Arora S, Dev K, Agarwal B, et al. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology, 2017, 223(4-5): 383-396.
|
26. |
He C, Larson-Casey JL, Gu L, et al. Cu, Zn-superoxide dismutase-mediated redox regulation of Jumonji domain containing 3 modulates macrophage polarization and pulmonary fibrosis. Am J Respir Cell Mol Biol, 2015, 55(1): 58-71.
|
27. |
Codullo V, Cova E, Pandolfi L, et al. Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. J Control Release, 2019, 310: 198-208.
|
28. |
Kreider T, Anthony RM, Urban JF Jr, et al. Alternatively activated macrophages in helminth infections. Curr Opin Immunol, 2007, 19(4): 448-453.
|
29. |
Carneiro PJ, Clevelario AL, Padilha GA, et al. Bosutinib therapy ameliorates lung inflammation and fibrosis in experimental silicosis. Front Physiol, 2017, 8: 159-168.
|
30. |
Al-Rubaie A, Wise AF, Sozo F, et al. The therapeutic effect of mesenchymal- stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Respir Res, 2018, 19(1): 114.
|
31. |
Willis GR, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med, 2018, 197(1): 104-116.
|
32. |
Liu SS, Lv XX, Liu C, et al. Targeting degradation of the transcription factor C/EBPβ reduces lung fibrosis by restoring activity of the ubiquitin-editing enzyme A20 in macrophages. Immunity, 2019, 51(3): 522-534.
|
33. |
Mojiri-Forushani H, Hemmati AA, Khodadadi A, et al. Valsartan attenuates bleomycin-induced pulmonary fibrosis by inhibition of NF-κB expression and regulation of Th1/Th2 cytokines. Immunopharmacol Immunotoxicol, 2018, 40(3): 225-231.
|
34. |
Ucero AC, Bakiri L, Roediger B, et al. Fra-2-expressing macrophages promote lung fibrosis in mice. J Clin Invest, 2019, 129(8): 3293-3309.
|
35. |
Mansouri N, Willis GR, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4(21): 186-193.
|