Citation: 王锦. Delta样蛋白3与小细胞肺癌的发生发展及治疗作用的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2023, 22(1): 71-75. doi: 10.7507/1671-6205.202111041 Copy
1. | Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin, 2021, 71(1): 7-33. |
2. | Meisel CT, Porcheri C, Mitsiadis TA. Cancer stem cells, quo vadis? The Notch signaling pathway in tumor initiation and progression. Cells, 2020, 9(8): 1879. |
3. | George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524(7563): 47-53. |
4. | Ladi E, Nichols JT, Ge WH, et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol, 2005, 170(6): 983-992. |
5. | Yan LX, Liu YH, Li Z, et al. Prognostic value of delta-like protein 3 combined with thyroid transcription factor-1 in small-cell lung cancer. Oncol Lett, 2019, 18(3): 2254-2261. |
6. | Ito T. Intratumoral heterogeneity of Notch1 expression in small cell lung cancer. J Thorac Dis, 2018, 10(3): 1272-1275. |
7. | 韩淑华, 黄见玲, 曹丹丹, 等. DLL3表达与晚期小细胞肺癌含铂化疗疗效及预后的相关性. 肿瘤防治研究, 2020, 47(11): 846-850. |
8. | Tendler S, Kanter L, Lewensohn R, et al. The prognostic implications of Notch1, Hes1, Ascl1, and DLL3 protein expression in SCLC patients receiving platinum-based chemotherapy. PLoS One, 2020, 15(10): e0240973. |
9. | Lim S, Hong M, Kim SP, et al. Prevalence of DLL3 expression and its prognostic role in extensive stage small cell lung cancer. J Thorac Oncol, 2019, 14(10): S820. |
10. | Rojo F, Corassa M, Mavroudis D, et al. International real-world study of DLL3 expression in patients with small cell lung cancer. Lung Cancer, 2020, 147: 237-243. |
11. | Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol, 2016, 17(11): 722-735. |
12. | Deng SM, Yan XC, Liang L, et al. The Notch ligand delta-like 3 promotes tumor growth and inhibits Notch signaling in lung cancer cells in mice. Biochem Biophys Res Commun, 2017, 483(1): 488-494. |
13. | Jin Y, Chen YM, Tang HR, et al. Activation of PI3K/AKT pathway is a potential mechanism of treatment resistance in small cell lung cancer. Clin Cancer Res, 2022, 28(3): 526-539. |
14. | Zhang JF, Gao H, Zhang YZ. Differential expression of the Notch1 receptor, and its ligands Dll1, Dll3 and Dll4 in distinct human pituitary adenoma subtypes. Oncol Lett, 2017, 13(6): 4533-4539. |
15. | Meder L, König K, Ozretić L, et al. NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. Int J Cancer, 2016, 138(4): 927-938. |
16. | Collins BJ, Kleeberger W, Ball DW. Notch in lung development and lung cancer. Semin Cancer Biol, 2004, 14(5): 357-364. |
17. | Hu CF, Dong JY, Liu L, et al. ASCL1 and DLL3 expressions and their clinicopathological implications in surgically resected pure small cell lung cancer: a study of 247 cases from the National Cancer Center of China. Thorac Cancer, 2022, 13(3): 338-345. |
18. | Borges M, Linnoila RI, van de Velde HJ, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature, 1997, 386(6627): 852-855. |
19. | Henke RM, Meredith DM, Borromeo MD, et al. Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Dev Biol, 2009, 328(2): 529-540. |
20. | Saunders LR, Bankovich AJ, Anderson WC, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med, 2015, 7(302): 302ra136. |
21. | 辜冲, 王慧选, 李影, 等. DLL3蛋白在人小细胞肺癌细胞中的功能及其机制. 科学技术与工程, 2019, 19(21): 104-109. |
22. | Prieto TG, Baldavira CM, Machado-Rugolo J, et al. Pulmonary neuroendocrine neoplasms overexpressing epithelial-mesenchymal transition mechanical barriers genes lack immune-suppressive response and present an increased risk of metastasis. Front Oncol, 2021, 11: 645623. |
23. | Ito T, Kudoh S, Ichimura T, et al. Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1. Hum Cell, 2017, 30(1): 1-10. |
24. | Konstantakou EG, Velentzas AD, Anagnostopoulos AK, et al. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS One, 2017, 12(2): e0171512. |
25. | Huang JL, Cao DD, Sha J, et al. DLL3 is regulated by LIN28B and miR-518d-5p and regulates cell proliferation, migration and chemotherapy response in advanced small cell lung cancer. Biochem Biophys Res Commun, 2019, 514(3): 853-860. |
26. | Furuta M, Kikuchi H, Shoji T, et al. DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. Cancer Sci, 2019, 110(5): 1599-1608. |
27. | 周菁, 郭丽. DLL3沉默抑制小细胞肺癌细胞系H592的增殖和迁移. 江苏大学学报(医学版), 2020, 30(4): 330-335. |
28. | Rudin CM, Pietanza MC, Bauer TM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol, 2017, 18(1): 42-51. |
29. | Johnson ML, Zvirbule Z, Laktionov K, et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the Phase 3 MERU Study. J Thorac Oncol, 2021, 16(9): 1570-1581. |
30. | Blackhall F, Jao K, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: results from the Phase 3 TAHOE Study. J Thorac Oncol, 2021, 16(9): 1547-1558. |
31. | Hipp S, Voynov V, Drobits-Handl B, et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin Cancer Res, 2020, 26(19): 5258-5268. |
32. | Chen X, Amar N, Zhu YK, et al. Combined DLL3-targeted bispecific antibody with PD-1 inhibition is efficient to suppress small cell lung cancer growth. J Immunother Cancer, 2020, 8(1): e000785. |
33. | Giffin MJ, Cooke K, Lobenhofer EK, et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin Cancer Res, 2021, 27(5): 1526-1537. |
34. | Wermke M, Felip E, Gambardella V, et al. Phase Ⅰ trial of the DLL3/CD3 bispecific T-cell engager BI 764532 in DLL3-positive small-cell lung cancer and neuroendocrine carcinomas. Future Oncol, 2022, 18(24): 2639-2649. |
35. | Liu MT, Huang WD, Guo YJ, et al. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J Leukoc Biol, 2022, 112(4): 901-911. |
36. | Isobe Y, Sato K, Nishinaga Y, et al. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine, 2020, 52: 102632. |
37. | Tully KM, Tendler S, Carter LM, et al. Radioimmunotherapy targeting delta-like ligand 3 in small cell lung cancer exhibits antitumor efficacy with low toxicity. Clin Cancer Res, 2022, 28(7): 1391-1401. |
38. | Ataee MH, Mirhosseini SA, Mirnejad R, et al. Design of two immunotoxins based rovalpituzumab antibody against DLL3 receptor; a promising potential opportunity. Res Pharm Sci, 2022, 17(4): 428-444. |
39. | Vitorino P, Chuang CH, Iannello A, et al. Rova-T enhances the anti-tumor activity of anti-PD1 in a murine model of small cell lung cancer with endogenous Dll3 expression. Transl Oncol, 2021, 14(1): 100883. |
40. | Li W, Ye LY, Huang Y, et al. Characteristics of Notch signaling pathway and its correlation with immune microenvironment in SCLC. Lung Cancer, 2022, 167: 25-33. |
41. | Huang LL, Hu XS, Wang Y, et al. Survival and pretreatment prognostic factors for extensive-stage small cell lung cancer: a comprehensive analysis of 358 patients. Thorac Cancer, 2021, 12(13): 1943-1951. |
42. | Calvo E, Spira A, Miguel M, et al. Safety, pharmacokinetics, and efficacy of budigalimab with rovalpituzumab tesirine in patients with small cell lung cancer. Cancer Treat Res Commun, 2021, 28: 100405. |
43. | Malhotra J, Nikolinakos P, Leal T, et al. A phase 1-2 study of rovalpituzumab tesirine in combination with nivolumab plus or minus ipilimumab in patients with previously treated extensive-stage SCLC. J Thorac Oncol, 2021, 16(9): 1559-1569. |
44. | Chen BC, Li H, Liu C, et al. Potential prognostic value of delta-like protein 3 in small cell lung cancer: a meta-analysis. World J Surg Oncol, 2020, 18(1): 226. |
45. | Kuempers C, Jagomast T, Krupar R, et al. Delta-Like protein 3 expression in paired chemonaive and chemorelapsed small cell lung cancer samples. Front Med (Lausanne), 2021, 8: 734901. |
46. | Rath B, Plangger A, Krenbek D, et al. Rovalpituzumab tesirine resistance: analysis of a corresponding small cell lung cancer and circulating tumor cell line pair. Anticancer Drugs, 2022, 33(3): 300-307. |
- 1. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin, 2021, 71(1): 7-33.
- 2. Meisel CT, Porcheri C, Mitsiadis TA. Cancer stem cells, quo vadis? The Notch signaling pathway in tumor initiation and progression. Cells, 2020, 9(8): 1879.
- 3. George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524(7563): 47-53.
- 4. Ladi E, Nichols JT, Ge WH, et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol, 2005, 170(6): 983-992.
- 5. Yan LX, Liu YH, Li Z, et al. Prognostic value of delta-like protein 3 combined with thyroid transcription factor-1 in small-cell lung cancer. Oncol Lett, 2019, 18(3): 2254-2261.
- 6. Ito T. Intratumoral heterogeneity of Notch1 expression in small cell lung cancer. J Thorac Dis, 2018, 10(3): 1272-1275.
- 7. 韩淑华, 黄见玲, 曹丹丹, 等. DLL3表达与晚期小细胞肺癌含铂化疗疗效及预后的相关性. 肿瘤防治研究, 2020, 47(11): 846-850.
- 8. Tendler S, Kanter L, Lewensohn R, et al. The prognostic implications of Notch1, Hes1, Ascl1, and DLL3 protein expression in SCLC patients receiving platinum-based chemotherapy. PLoS One, 2020, 15(10): e0240973.
- 9. Lim S, Hong M, Kim SP, et al. Prevalence of DLL3 expression and its prognostic role in extensive stage small cell lung cancer. J Thorac Oncol, 2019, 14(10): S820.
- 10. Rojo F, Corassa M, Mavroudis D, et al. International real-world study of DLL3 expression in patients with small cell lung cancer. Lung Cancer, 2020, 147: 237-243.
- 11. Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol, 2016, 17(11): 722-735.
- 12. Deng SM, Yan XC, Liang L, et al. The Notch ligand delta-like 3 promotes tumor growth and inhibits Notch signaling in lung cancer cells in mice. Biochem Biophys Res Commun, 2017, 483(1): 488-494.
- 13. Jin Y, Chen YM, Tang HR, et al. Activation of PI3K/AKT pathway is a potential mechanism of treatment resistance in small cell lung cancer. Clin Cancer Res, 2022, 28(3): 526-539.
- 14. Zhang JF, Gao H, Zhang YZ. Differential expression of the Notch1 receptor, and its ligands Dll1, Dll3 and Dll4 in distinct human pituitary adenoma subtypes. Oncol Lett, 2017, 13(6): 4533-4539.
- 15. Meder L, König K, Ozretić L, et al. NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. Int J Cancer, 2016, 138(4): 927-938.
- 16. Collins BJ, Kleeberger W, Ball DW. Notch in lung development and lung cancer. Semin Cancer Biol, 2004, 14(5): 357-364.
- 17. Hu CF, Dong JY, Liu L, et al. ASCL1 and DLL3 expressions and their clinicopathological implications in surgically resected pure small cell lung cancer: a study of 247 cases from the National Cancer Center of China. Thorac Cancer, 2022, 13(3): 338-345.
- 18. Borges M, Linnoila RI, van de Velde HJ, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature, 1997, 386(6627): 852-855.
- 19. Henke RM, Meredith DM, Borromeo MD, et al. Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Dev Biol, 2009, 328(2): 529-540.
- 20. Saunders LR, Bankovich AJ, Anderson WC, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med, 2015, 7(302): 302ra136.
- 21. 辜冲, 王慧选, 李影, 等. DLL3蛋白在人小细胞肺癌细胞中的功能及其机制. 科学技术与工程, 2019, 19(21): 104-109.
- 22. Prieto TG, Baldavira CM, Machado-Rugolo J, et al. Pulmonary neuroendocrine neoplasms overexpressing epithelial-mesenchymal transition mechanical barriers genes lack immune-suppressive response and present an increased risk of metastasis. Front Oncol, 2021, 11: 645623.
- 23. Ito T, Kudoh S, Ichimura T, et al. Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1. Hum Cell, 2017, 30(1): 1-10.
- 24. Konstantakou EG, Velentzas AD, Anagnostopoulos AK, et al. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS One, 2017, 12(2): e0171512.
- 25. Huang JL, Cao DD, Sha J, et al. DLL3 is regulated by LIN28B and miR-518d-5p and regulates cell proliferation, migration and chemotherapy response in advanced small cell lung cancer. Biochem Biophys Res Commun, 2019, 514(3): 853-860.
- 26. Furuta M, Kikuchi H, Shoji T, et al. DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. Cancer Sci, 2019, 110(5): 1599-1608.
- 27. 周菁, 郭丽. DLL3沉默抑制小细胞肺癌细胞系H592的增殖和迁移. 江苏大学学报(医学版), 2020, 30(4): 330-335.
- 28. Rudin CM, Pietanza MC, Bauer TM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol, 2017, 18(1): 42-51.
- 29. Johnson ML, Zvirbule Z, Laktionov K, et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the Phase 3 MERU Study. J Thorac Oncol, 2021, 16(9): 1570-1581.
- 30. Blackhall F, Jao K, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: results from the Phase 3 TAHOE Study. J Thorac Oncol, 2021, 16(9): 1547-1558.
- 31. Hipp S, Voynov V, Drobits-Handl B, et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin Cancer Res, 2020, 26(19): 5258-5268.
- 32. Chen X, Amar N, Zhu YK, et al. Combined DLL3-targeted bispecific antibody with PD-1 inhibition is efficient to suppress small cell lung cancer growth. J Immunother Cancer, 2020, 8(1): e000785.
- 33. Giffin MJ, Cooke K, Lobenhofer EK, et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin Cancer Res, 2021, 27(5): 1526-1537.
- 34. Wermke M, Felip E, Gambardella V, et al. Phase Ⅰ trial of the DLL3/CD3 bispecific T-cell engager BI 764532 in DLL3-positive small-cell lung cancer and neuroendocrine carcinomas. Future Oncol, 2022, 18(24): 2639-2649.
- 35. Liu MT, Huang WD, Guo YJ, et al. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J Leukoc Biol, 2022, 112(4): 901-911.
- 36. Isobe Y, Sato K, Nishinaga Y, et al. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine, 2020, 52: 102632.
- 37. Tully KM, Tendler S, Carter LM, et al. Radioimmunotherapy targeting delta-like ligand 3 in small cell lung cancer exhibits antitumor efficacy with low toxicity. Clin Cancer Res, 2022, 28(7): 1391-1401.
- 38. Ataee MH, Mirhosseini SA, Mirnejad R, et al. Design of two immunotoxins based rovalpituzumab antibody against DLL3 receptor; a promising potential opportunity. Res Pharm Sci, 2022, 17(4): 428-444.
- 39. Vitorino P, Chuang CH, Iannello A, et al. Rova-T enhances the anti-tumor activity of anti-PD1 in a murine model of small cell lung cancer with endogenous Dll3 expression. Transl Oncol, 2021, 14(1): 100883.
- 40. Li W, Ye LY, Huang Y, et al. Characteristics of Notch signaling pathway and its correlation with immune microenvironment in SCLC. Lung Cancer, 2022, 167: 25-33.
- 41. Huang LL, Hu XS, Wang Y, et al. Survival and pretreatment prognostic factors for extensive-stage small cell lung cancer: a comprehensive analysis of 358 patients. Thorac Cancer, 2021, 12(13): 1943-1951.
- 42. Calvo E, Spira A, Miguel M, et al. Safety, pharmacokinetics, and efficacy of budigalimab with rovalpituzumab tesirine in patients with small cell lung cancer. Cancer Treat Res Commun, 2021, 28: 100405.
- 43. Malhotra J, Nikolinakos P, Leal T, et al. A phase 1-2 study of rovalpituzumab tesirine in combination with nivolumab plus or minus ipilimumab in patients with previously treated extensive-stage SCLC. J Thorac Oncol, 2021, 16(9): 1559-1569.
- 44. Chen BC, Li H, Liu C, et al. Potential prognostic value of delta-like protein 3 in small cell lung cancer: a meta-analysis. World J Surg Oncol, 2020, 18(1): 226.
- 45. Kuempers C, Jagomast T, Krupar R, et al. Delta-Like protein 3 expression in paired chemonaive and chemorelapsed small cell lung cancer samples. Front Med (Lausanne), 2021, 8: 734901.
- 46. Rath B, Plangger A, Krenbek D, et al. Rovalpituzumab tesirine resistance: analysis of a corresponding small cell lung cancer and circulating tumor cell line pair. Anticancer Drugs, 2022, 33(3): 300-307.