Citation: ZHANG Jianfeng. T淋巴细胞在脓毒症相关急性呼吸窘迫综合征中的作用研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2023, 22(3): 223-228. doi: 10.7507/1671-6205.202203050 Copy
1. | Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med, 2021, 49(11): e1063-e1143. |
2. | Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study. Lancet, 2020, 395(10219): 200-211. |
3. | Iscimen R, Cartin-Ceba R, Yilmaz M, et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med, 2008, 36(5): 1518-1522. |
4. | Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, 315(8): 788-800. |
5. | Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight, 2019, 4(2): 124061. |
6. | Zhou X, Liao YX. Gut-lung crosstalk in sepsis-induced acute lung injury. Front Microbiol, 2021, 12: 779620. |
7. | Jin C, Chen J, Gu J, et al. Gut-lymph-lung pathway mediates sepsis-induced acute lung injury. Chin Med J (Engl), 2020, 133(18): 2212-2218. |
8. | Vassiliou AG, Kotanidou A, Dimopoulou I, et al. Endothelial damage in acute respiratory distress syndrome. Int J Mol Sci, 2020, 21(22): 8793. |
9. | Yang CY, Chen CS, Yiang GT, et al. New insights into the immune molecular regulation of the pathogenesis of acute respiratory distress syndrome. Int J Mol Sci, 2018, 19(2): 588. |
10. | Nakamori Y, Park EJ, Shimaoka M. Immune deregulation in sepsis and septic shock: reversing immune paralysis by targeting PD-1/PD-L1 pathway. Front Immunol, 2020, 11: 624279. |
11. | Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol, 2020, 11: 1722. |
12. | Martin MD, Badovinac VP, Griffith TS. CD4 T cell responses and the sepsis-induced immunoparalysis state. Front Immunol, 2020, 11: 1364. |
13. | Zeng XL, Feng JH, Yang YL, et al. Screening of key genes of sepsis and septic shock using bioinformatics analysis. J Inflamm Res, 2021, 14: 829-841. |
14. | Chen JX, Lin M, Zhang S. Identification of key miRNA-mRNA pairs in septic mice by bioinformatics analysis. Mol Med Rep, 2019, 20(4): 3858-3866. |
15. | Raphael I, Joern RR, Forsthuber TG. Memory CD4+ T cells in immunity and autoimmune diseases. Cells, 2020, 9(3): 531. |
16. | Brady J, Horie S, Laffey JG. Role of the adaptive immune response in sepsis. Intensive Care Med Exp, 2020, 8(Suppl 1): 20. |
17. | Saravia J, Chapman NM, Chi HB. Helper T cell differentiation. Cell Mol Immunol, 2019, 16(7): 634-643. |
18. | Li LL, Dai B, Sun YH, et al. The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis. Ann Transl Med, 2020, 8(11): 674-685. |
19. | Lei CS, Wu JM, Lee PC, et al. Antecedent administration of glutamine benefits the homeostasis of CD4+ T cells and attenuates lung injury in mice with gut-derived polymicrobial sepsis. JPEN J Parenter Enteral Nutr, 2019, 43(7): 927-936. |
20. | Yu D, Peng XH, Li P. The correlation between Jun N-terminal kinase pathway-associated phosphatase and Th1 cell or Th17 cell in sepsis and their potential roles in clinical sepsis management. Ir J Med Sci, 2021, 190(3): 1173-1181. |
21. | Zhao Y, Zhang XY, Song ZX, et al. Rapamycin attenuates acute lung injury induced by LPS through inhibition of Th17 cell proliferation in mice. Sci Rep, 2016, 6: 20156. |
22. | Bozinovski S, Seow HJ, Chan SPJ, et al. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette-smoke-induced lung inflammation in mice. Clin Sci (Lond), 2015, 129(9): 785-796. |
23. | Li JT, Melton AC, Su G, et al. Unexpected role for adaptive αβTh17 cells in acute respiratory distress syndrome. J Immunol, 2015, 195(1): 87-95. |
24. | Li G, Zhang LT, Han NN, et al. Increased Th17 and Th22 cell percentages predict acute lung injury in patients with sepsis. Lung, 2020, 198(4): 687-693. |
25. | Toyama M, Kudo D, Aoyagi T, et al. Attenuated accumulation of regulatory T cells and reduced production of interleukin 10 lead to the exacerbation of tissue injury in a mouse model of acute respiratory distress syndrome. Microbiol Immunol, 2018, 62(2): 111-123. |
26. | Chai YS, Chen YQ, Lin SH, et al. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother, 2020, 125: 109946. |
27. | Kumar V. Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol, 2019, 73: 128-145. |
28. | Svedova J, Ménoret A, Mittal P, et al. Therapeutic blockade of CD54 attenuates pulmonary barrier damage in T cell-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2017, 313(1): L177-L191. |
29. | Tan W, Zhang CJ, Liu JZ, et al. Regulatory T-cells promote pulmonary repair by modulating T helper cell immune responses in lipopolysaccharide-induced acute respiratory distress syndrome. Immunology, 2019, 157(2): 151-162. |
30. | Mock JR, Dial CF, Tune MK, et al. Impact of regulatory T cells on type 2 alveolar epithelial cell transcriptomes during resolution of acute lung injury and contributions of IFN-γ. Am J Respir Cell Mol Biol, 2020, 63(4): 464-477. |
31. | Tan W, Zhang BH, Liu XP, et al. Interleukin-33-dependent accumulation of regulatory T Cells mediates pulmonary epithelial regeneration during acute respiratory distress syndrome. Front Immunol, 2021, 12: 653803. |
32. | Dong D, Zheng LQ, Lin JQ, et al. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature, 2019, 573(7775): 546-552. |
33. | Xu XY, Li H, Xu CQ. Structural understanding of T cell receptor triggering. Cell Mol Immunol, 2020, 17(3): 193-202. |
34. | Azuma M. Co-signal molecules in T-Cell activation: historical overview and perspective. Adv Exp Med Biol, 2019, 1189: 3-23. |
35. | Ahangar NK, Hemmat N, Khalaj-Kondori M, et al. The regulatory cross-talk between microRNAs and novel members of the B7 family in human diseases: a scoping review. Int J Mol Sci, 2021, 22(5): 2652. |
36. | Sun YN, Xie JF, Anyalebechi JC, et al. CD28 agonism improves survival in immunologically experienced septic mice via IL-10 released by Foxp3+ regulatory T cells. J Immunol, 2020, 205(12): 3358-3371. |
37. | 林涛, 孔雅娴, 贾蓓, 等. 脂多糖所致脓毒症诱导的急性肺损伤肺组织T淋巴细胞活化及共刺激分子表达的研究. 中华实验和临床感染病杂志(电子版), 2015, 9(2): 116-119. |
38. | Gaborit BJ, Chaumette T, Chauveau M, et al. Circulating regulatory T cells expressing tumor necrosis factor receptor type 2 contribute to sepsis-induced immunosuppression in patients during septic shock. J Infect Dis, 2021, 224(12): 2160-2169. |
39. | Panoskaltsis N, McCarthy NE, Stagg AJ, et al. Immune reconstitution and clinical recovery following anti-CD28 antibody (TGN1412)-induced cytokine storm. Cancer Immunol Immunother, 2021, 70(4): 1127-1142. |
40. | Ramachandran G, Kaempfer R, Chung CS, et al. CD28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and gram-negative bacterial peritonitis. J Infect Dis, 2015, 211(6): 995-1003. |
41. | Bulger EM, May AK, Robinson BRH, et al. A novel immune modulator for patients with necrotizing soft tissue infections (NSTI): results of a multicenter, phase 3 randomized controlled trial of reltecimod (AB 103). Ann Surg, 2020, 272(3): 469-478. |
42. | Fichtner AS, Ravens S, Prinz I. Human γδ TCR repertoires in health and disease. Cells, 2020, 9(4): 800. |
43. | Barbosa CRR, Barton J, Shepherd AJ, et al. Mechanistic diversity in MHC class I antigen recognition. Biochem J, 2021, 478(24): 4187-4202. |
44. | Cheng PL, Chen HH, Jiang YH, et al. Using RNA-Seq to investigate immune-metabolism features in immunocompromised patients with sepsis. Front Med (Lausanne), 2021, 8: 747263. |
45. | 黄循斌, 叶淑珍, 邬吉伟, 等. 免疫组库测序分析新生儿脓毒症患者外周血T细胞受体β链CDR3的多样性. 中国当代儿科杂志, 2021, 23(11): 1154-1160. |
46. | Tomino A, Tsuda M, Aoki R, et al. Increased PD-1 expression and altered T cell repertoire diversity predict mortality in patients with septic shock: a preliminary study. PLoS One, 2017, 12(1): e169653. |
47. | Cao C, Yu MM, Chai YF. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis, 2019, 10(10): 782. |
48. | Chen JW, Wang H, Guo R, et al. Early expression of functional markers on CD4+ T cells predicts outcomes in ICU patients with sepsis. Front Immunol, 2022, 13: 938538. |
49. | Saito M, Inoue S, Yamashita K, et al. IL-15 Improves aging-induced persistent T cell exhaustion in mouse models of repeated sepsis. Shock, 2020, 53(2): 228-235. |
50. | Bai GX, Wang H, Cui N. mTOR pathway mediates endoplasmic reticulum stress-induced CD4+ T cell apoptosis in septic mice. Apoptosis, 2022, 27(9-10): 740-750. |
51. | Xie JF, Qiu HB, Yang Y. T-cell co-inhibitory molecules in sepsis-induced immunosuppression: from bench to bedside. Chin Med J (Engl), 2017, 130(10): 1249-1252. |
52. | Turnbull IR, Mazer MB, Hoofnagle MH, et al. IL-7 immunotherapy in a nonimmunocompromised patient with intractable fungal wound sepsis. Open Forum Infect Dis, 2021, 8(6): ofab256. |
53. | Francois B, Jeannet R, Daix T, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight, 2018, 3(5): e98960. |
54. | Wang CJ, Xie K, Li KF, et al. Potential therapeutic effects of interleukin-35 on the differentiation of naïve T cells into Helios+Foxp3+ Tregs in clinical and experimental acute respiratory distress syndrome. Mol Immunol, 2021, 132: 236-249. |
55. | Kunkl M, Amormino C, Frascolla S, et al. CD28 autonomous signaling orchestrates IL-22 expression and IL-22-regulated epithelial barrier functions in human T lymphocytes. Front Immunol, 2020, 11: 590964. |
56. | Nadeem A, Al-Harbi NO, Ahmad SF, et al. Blockade of interleukin-2-inducible T-cell kinase signaling attenuates acute lung injury in mice through adjustment of pulmonary Th17/Treg immune responses and reduction of oxidative stress. Int Immunopharmacol, 2020, 83: 106369. |
57. | Lomas-Neira J, Monaghan SF, Huang X, et al. Novel role for PD-1: PD-L1 as mediator of pulmonary vascular endothelial cell functions in pathogenesis of indirect ARDS in mice. Front Immunol, 2018, 9: 3030. |
- 1. Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med, 2021, 49(11): e1063-e1143.
- 2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study. Lancet, 2020, 395(10219): 200-211.
- 3. Iscimen R, Cartin-Ceba R, Yilmaz M, et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med, 2008, 36(5): 1518-1522.
- 4. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, 315(8): 788-800.
- 5. Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight, 2019, 4(2): 124061.
- 6. Zhou X, Liao YX. Gut-lung crosstalk in sepsis-induced acute lung injury. Front Microbiol, 2021, 12: 779620.
- 7. Jin C, Chen J, Gu J, et al. Gut-lymph-lung pathway mediates sepsis-induced acute lung injury. Chin Med J (Engl), 2020, 133(18): 2212-2218.
- 8. Vassiliou AG, Kotanidou A, Dimopoulou I, et al. Endothelial damage in acute respiratory distress syndrome. Int J Mol Sci, 2020, 21(22): 8793.
- 9. Yang CY, Chen CS, Yiang GT, et al. New insights into the immune molecular regulation of the pathogenesis of acute respiratory distress syndrome. Int J Mol Sci, 2018, 19(2): 588.
- 10. Nakamori Y, Park EJ, Shimaoka M. Immune deregulation in sepsis and septic shock: reversing immune paralysis by targeting PD-1/PD-L1 pathway. Front Immunol, 2020, 11: 624279.
- 11. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol, 2020, 11: 1722.
- 12. Martin MD, Badovinac VP, Griffith TS. CD4 T cell responses and the sepsis-induced immunoparalysis state. Front Immunol, 2020, 11: 1364.
- 13. Zeng XL, Feng JH, Yang YL, et al. Screening of key genes of sepsis and septic shock using bioinformatics analysis. J Inflamm Res, 2021, 14: 829-841.
- 14. Chen JX, Lin M, Zhang S. Identification of key miRNA-mRNA pairs in septic mice by bioinformatics analysis. Mol Med Rep, 2019, 20(4): 3858-3866.
- 15. Raphael I, Joern RR, Forsthuber TG. Memory CD4+ T cells in immunity and autoimmune diseases. Cells, 2020, 9(3): 531.
- 16. Brady J, Horie S, Laffey JG. Role of the adaptive immune response in sepsis. Intensive Care Med Exp, 2020, 8(Suppl 1): 20.
- 17. Saravia J, Chapman NM, Chi HB. Helper T cell differentiation. Cell Mol Immunol, 2019, 16(7): 634-643.
- 18. Li LL, Dai B, Sun YH, et al. The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis. Ann Transl Med, 2020, 8(11): 674-685.
- 19. Lei CS, Wu JM, Lee PC, et al. Antecedent administration of glutamine benefits the homeostasis of CD4+ T cells and attenuates lung injury in mice with gut-derived polymicrobial sepsis. JPEN J Parenter Enteral Nutr, 2019, 43(7): 927-936.
- 20. Yu D, Peng XH, Li P. The correlation between Jun N-terminal kinase pathway-associated phosphatase and Th1 cell or Th17 cell in sepsis and their potential roles in clinical sepsis management. Ir J Med Sci, 2021, 190(3): 1173-1181.
- 21. Zhao Y, Zhang XY, Song ZX, et al. Rapamycin attenuates acute lung injury induced by LPS through inhibition of Th17 cell proliferation in mice. Sci Rep, 2016, 6: 20156.
- 22. Bozinovski S, Seow HJ, Chan SPJ, et al. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette-smoke-induced lung inflammation in mice. Clin Sci (Lond), 2015, 129(9): 785-796.
- 23. Li JT, Melton AC, Su G, et al. Unexpected role for adaptive αβTh17 cells in acute respiratory distress syndrome. J Immunol, 2015, 195(1): 87-95.
- 24. Li G, Zhang LT, Han NN, et al. Increased Th17 and Th22 cell percentages predict acute lung injury in patients with sepsis. Lung, 2020, 198(4): 687-693.
- 25. Toyama M, Kudo D, Aoyagi T, et al. Attenuated accumulation of regulatory T cells and reduced production of interleukin 10 lead to the exacerbation of tissue injury in a mouse model of acute respiratory distress syndrome. Microbiol Immunol, 2018, 62(2): 111-123.
- 26. Chai YS, Chen YQ, Lin SH, et al. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother, 2020, 125: 109946.
- 27. Kumar V. Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol, 2019, 73: 128-145.
- 28. Svedova J, Ménoret A, Mittal P, et al. Therapeutic blockade of CD54 attenuates pulmonary barrier damage in T cell-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2017, 313(1): L177-L191.
- 29. Tan W, Zhang CJ, Liu JZ, et al. Regulatory T-cells promote pulmonary repair by modulating T helper cell immune responses in lipopolysaccharide-induced acute respiratory distress syndrome. Immunology, 2019, 157(2): 151-162.
- 30. Mock JR, Dial CF, Tune MK, et al. Impact of regulatory T cells on type 2 alveolar epithelial cell transcriptomes during resolution of acute lung injury and contributions of IFN-γ. Am J Respir Cell Mol Biol, 2020, 63(4): 464-477.
- 31. Tan W, Zhang BH, Liu XP, et al. Interleukin-33-dependent accumulation of regulatory T Cells mediates pulmonary epithelial regeneration during acute respiratory distress syndrome. Front Immunol, 2021, 12: 653803.
- 32. Dong D, Zheng LQ, Lin JQ, et al. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature, 2019, 573(7775): 546-552.
- 33. Xu XY, Li H, Xu CQ. Structural understanding of T cell receptor triggering. Cell Mol Immunol, 2020, 17(3): 193-202.
- 34. Azuma M. Co-signal molecules in T-Cell activation: historical overview and perspective. Adv Exp Med Biol, 2019, 1189: 3-23.
- 35. Ahangar NK, Hemmat N, Khalaj-Kondori M, et al. The regulatory cross-talk between microRNAs and novel members of the B7 family in human diseases: a scoping review. Int J Mol Sci, 2021, 22(5): 2652.
- 36. Sun YN, Xie JF, Anyalebechi JC, et al. CD28 agonism improves survival in immunologically experienced septic mice via IL-10 released by Foxp3+ regulatory T cells. J Immunol, 2020, 205(12): 3358-3371.
- 37. 林涛, 孔雅娴, 贾蓓, 等. 脂多糖所致脓毒症诱导的急性肺损伤肺组织T淋巴细胞活化及共刺激分子表达的研究. 中华实验和临床感染病杂志(电子版), 2015, 9(2): 116-119.
- 38. Gaborit BJ, Chaumette T, Chauveau M, et al. Circulating regulatory T cells expressing tumor necrosis factor receptor type 2 contribute to sepsis-induced immunosuppression in patients during septic shock. J Infect Dis, 2021, 224(12): 2160-2169.
- 39. Panoskaltsis N, McCarthy NE, Stagg AJ, et al. Immune reconstitution and clinical recovery following anti-CD28 antibody (TGN1412)-induced cytokine storm. Cancer Immunol Immunother, 2021, 70(4): 1127-1142.
- 40. Ramachandran G, Kaempfer R, Chung CS, et al. CD28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and gram-negative bacterial peritonitis. J Infect Dis, 2015, 211(6): 995-1003.
- 41. Bulger EM, May AK, Robinson BRH, et al. A novel immune modulator for patients with necrotizing soft tissue infections (NSTI): results of a multicenter, phase 3 randomized controlled trial of reltecimod (AB 103). Ann Surg, 2020, 272(3): 469-478.
- 42. Fichtner AS, Ravens S, Prinz I. Human γδ TCR repertoires in health and disease. Cells, 2020, 9(4): 800.
- 43. Barbosa CRR, Barton J, Shepherd AJ, et al. Mechanistic diversity in MHC class I antigen recognition. Biochem J, 2021, 478(24): 4187-4202.
- 44. Cheng PL, Chen HH, Jiang YH, et al. Using RNA-Seq to investigate immune-metabolism features in immunocompromised patients with sepsis. Front Med (Lausanne), 2021, 8: 747263.
- 45. 黄循斌, 叶淑珍, 邬吉伟, 等. 免疫组库测序分析新生儿脓毒症患者外周血T细胞受体β链CDR3的多样性. 中国当代儿科杂志, 2021, 23(11): 1154-1160.
- 46. Tomino A, Tsuda M, Aoki R, et al. Increased PD-1 expression and altered T cell repertoire diversity predict mortality in patients with septic shock: a preliminary study. PLoS One, 2017, 12(1): e169653.
- 47. Cao C, Yu MM, Chai YF. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis, 2019, 10(10): 782.
- 48. Chen JW, Wang H, Guo R, et al. Early expression of functional markers on CD4+ T cells predicts outcomes in ICU patients with sepsis. Front Immunol, 2022, 13: 938538.
- 49. Saito M, Inoue S, Yamashita K, et al. IL-15 Improves aging-induced persistent T cell exhaustion in mouse models of repeated sepsis. Shock, 2020, 53(2): 228-235.
- 50. Bai GX, Wang H, Cui N. mTOR pathway mediates endoplasmic reticulum stress-induced CD4+ T cell apoptosis in septic mice. Apoptosis, 2022, 27(9-10): 740-750.
- 51. Xie JF, Qiu HB, Yang Y. T-cell co-inhibitory molecules in sepsis-induced immunosuppression: from bench to bedside. Chin Med J (Engl), 2017, 130(10): 1249-1252.
- 52. Turnbull IR, Mazer MB, Hoofnagle MH, et al. IL-7 immunotherapy in a nonimmunocompromised patient with intractable fungal wound sepsis. Open Forum Infect Dis, 2021, 8(6): ofab256.
- 53. Francois B, Jeannet R, Daix T, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight, 2018, 3(5): e98960.
- 54. Wang CJ, Xie K, Li KF, et al. Potential therapeutic effects of interleukin-35 on the differentiation of naïve T cells into Helios+Foxp3+ Tregs in clinical and experimental acute respiratory distress syndrome. Mol Immunol, 2021, 132: 236-249.
- 55. Kunkl M, Amormino C, Frascolla S, et al. CD28 autonomous signaling orchestrates IL-22 expression and IL-22-regulated epithelial barrier functions in human T lymphocytes. Front Immunol, 2020, 11: 590964.
- 56. Nadeem A, Al-Harbi NO, Ahmad SF, et al. Blockade of interleukin-2-inducible T-cell kinase signaling attenuates acute lung injury in mice through adjustment of pulmonary Th17/Treg immune responses and reduction of oxidative stress. Int Immunopharmacol, 2020, 83: 106369.
- 57. Lomas-Neira J, Monaghan SF, Huang X, et al. Novel role for PD-1: PD-L1 as mediator of pulmonary vascular endothelial cell functions in pathogenesis of indirect ARDS in mice. Front Immunol, 2018, 9: 3030.
-
Previous Article
嗜酸性粒细胞在急性呼吸窘迫综合征中的研究进展