1. |
Morris A, Beck JM, Schloss PD, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med, 2013, 187(10): 1067-1075.
|
2. |
Bagheri Z, Moeinzadeh L, Razmkhah M. Roles of microbiota in cancer: from tumor development to treatment. J Oncol, 2022, 3845104.
|
3. |
Zhou ZW, Long HZ, Cheng Y, et al. From microbiome to inflammation: the key drivers of cervical cancer. Front Microbiol, 2021, 12: 767931.
|
4. |
Xiong K, Sun W, He Y, et al. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review. Transl Lung Cancer Res, 2021, 10(10): 4012-4026.
|
5. |
Qin Y, Chen Y, Chen J, et al. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future. Infect Agent Cancer, 2022, 17(1): 20.
|
6. |
Shiels MS, Albanes D, Virtamo J, et al. Increased risk of lung cancer in men with tuberculosis in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev, 2011, 20(4): 672-678.
|
7. |
Mostafaei S, Sayad B, Azar MEF, et al. The role of viral and bacterial infections in the pathogenesis of IPF: a systematic review and meta-analysis. Respir Res, 2021, 22(1): 53.
|
8. |
Kewalramani N, Machahua C, Poletti V, et al. Lung cancer in patients with fibrosing interstitial lung diseases: an overview of current knowledge and challenges. ERJ Open Res, 2022, 8(2): 00115-2022.
|
9. |
Zhuo WL, Zhu B, Xiang ZL, et al. Assessment of the relationship between Helicobacter pylori and lung cancer: a meta-analysis. Arch Med Res, 2009, 40(5): 406-410.
|
10. |
Budisan L, Zanoaga O, Braicu C, et al. Links between infections, lung cancer, and the immune system. Int J Mol Sci, 2021, 22(17): 9394.
|
11. |
Nakashima S, Kakugawa T, Yura H, et al. Identification of Helicobacter pylori VacA in human lung and its effects on lung cells. Biochem Biophys Res Commun, 2015, 460(3): 721-726.
|
12. |
Yoon HS, Shu XO, Cai H, et al. Associations of lung cancer risk with biomarkers of Helicobacter pylori infection. Carcinogenesis, 2022, 43(6): 538-546.
|
13. |
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther, 2021, 6(1): 263.
|
14. |
Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell, 2019, 176(5): 998-1013.
|
15. |
Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol, 2005, 175(9): 6177-6189.
|
16. |
Matsuo K, Yoshie O & Nakayama T. Multifaceted roles of chemokines and chemokine receptors in tumor immunity. Cancers (Basel), 2021, 13(23): 6132.
|
17. |
Tsay JJ, Wu BG, Sulaiman I, et al. Lower airway dysbiosis affects lung cancer progression. Cancer Discov, 2021, 11(2): 293-307.
|
18. |
孙一凡. 肺癌患者肺部和口腔菌群研究[D]. 军事科学院, 2023.
|
19. |
Rook GAW. Evolution, the immune system, and the health consequences of socioeconomic inequality. mSystems, 2022, 7(2): e0143821.
|
20. |
Zheng L, Xu J, Sai B, et al. Microbiome related cytotoxically active CD8+ TIL are inversely associated with lung cancer development. Front Oncol, 2020, 10: 531131.
|
21. |
Le Noci V, Guglielmetti S, Arioli S, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep, 2018, 24(13): 3528-3538.
|
22. |
Li M, van Esch B, Wagenaar GTM, et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol, 2018, 831: 52-59.
|
23. |
Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun, 2015, 6: 7320.
|
24. |
Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell, 2018, 9(5): 474-487.
|
25. |
Segal LN, Clemente JC, Li Y, et al. Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients. Cell Host Microbe, 2017, 21(4): 530-537.
|
26. |
Pellizzaro C, Coradini D, Daniotti A, et al. Modulation of cell cycle-related protein expression by sodium butyrate in human non-small cell lung cancer cell lines. Int J Cancer, 2001, 91(5): 654-657.
|
27. |
Xiao X, Cao Y, Chen H. Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells. J Cell Biochem, 2018, 119(4): 3563-3573.
|
28. |
Iorio A, Biazzo M, Gardini S, et al. Cross-correlation of virome-bacteriome-host-metabolome to study respiratory health. Trends Microbiol, 2022, 30(1): 34-46.
|
29. |
Liu HX, Tao LL, Zhang J, et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer, 2018, 142(4): 769-778.
|
30. |
马艺邱. 肺部菌群失调影响早期肺癌的复发[C]. 2021年中国肿瘤标志物学术大会暨第十五届肿瘤标志物青年科学家论坛论文集, 2021: 100.
|
31. |
Liu Y, O'Brien JL, Ajami NJ, et al. Lung tissue microbial profile in lung cancer is distinct from emphysema. Am J Cancer Res, 2018, 8(9): 1775-1787.
|
32. |
Apopa PL, Alley L, Penney RB, et al. PARP1 is up-regulated in non-small cell lung cancer tissues in the presence of the cyanobacterial toxin microcystin. Front Microbiol, 2018, 9: 1757.
|
33. |
Tsay JJ, Wu BG, Badri MH, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med, 2018, 198(9): 1188-1198.
|
34. |
Cameron SJS, Lewis KE, Huws SA, et al. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One, 2017, 12(5): e0177062.
|
35. |
Zhang W, Luo J, Dong X, et al. Salivary microbial dysbiosis is associated with systemic inflammatory markers and predicted oral metabolites in non-small cell lung cancer patients. J Cancer, 2019, 10(7): 1651-1662.
|
36. |
Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol, 2018, 19(1): 123.
|
37. |
Zheng L, Sun R, Zhu Y, et al. Lung microbiome alterations in NSCLC patients. Sci Rep, 2021, 11(1): 11736.
|
38. |
Sholl J, Sepich-Poore GD, Knight R, et al. Redrawing therapeutic boundaries: microbiota and cancer. Trends Cancer, 2022, 8(2): 87-97.
|
39. |
Sun JY, Yin TL, Zhou J, et al. Gut microbiome and cancer immunotherapy. J Cell Physiol, 2020, 235(5): 4082-4088.
|
40. |
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264): 1079-1084.
|
41. |
Boesch M, Baty F, Albrich WC, et al. Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncoimmunology, 2021, 10(1): 1988403.
|
42. |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371): 97-103.
|
43. |
Mao J, Wang D, Long J, et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J Immunother Cancer, 2021, 9(12): e003334.
|
44. |
Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science, 2021, 371(6529): 602-609.
|
45. |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 2017, 170(3): 548-563.
|
46. |
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342(6161): 971-976.
|
47. |
Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity, 2016, 45(4): 931-943.
|
48. |
Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357(6356): 1156-1160.
|
49. |
Liu X, Wu X, Ma Y, et al. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro. Oncol Rep, 2017, 37(3): 1793-1803.
|
50. |
Conry RM, Westbrook B, McKee S, et al. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother, 2018, 14(4): 839-846.
|
51. |
Zhou S, Gravekamp C, Bermudes D, et al. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer, 2018, 18(12): 727-743.
|