Citation: 黄艺林, 高金明. PD-1/PD-L1通路在哮喘发病机制中的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2023, 22(8): 591-595. doi: 10.7507/1671-6205.202302045 Copy
1. | 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版). 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. |
2. | Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med, 1999, 160(3): 1001-1008. |
3. | Pichavant M, Charbonnier AS, Taront S, et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol, 2005, 115(4): 771-778. |
4. | Paplinska-Goryca M, Misiukiewicz-Stepien P, Proboszcz M, et al. The expressions of TSLP, IL-33, and IL-17A in monocyte derived dendritic cells from asthma and COPD patients are related to epithelial–macrophage interactions. Cells, 2020, 9(9): 1944. |
5. | Castellanos CA, Ren X, Gonzalez SL, et al. Lymph node-resident dendritic cells drive TH2 cell development involving MARCH1. Sci Immunol, 2021, 6(64): eabh0707. |
6. | Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, 192(7): 1027-1034. |
7. | Galván Morales MA, Montero-Vargas JM, Vizuet-de-Rueda JC, et al. New insights into the role of PD-1 and its ligands in allergic disease. Int J Mol Sci, 2021, 22(21): 11898. |
8. | Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med, 2016, 375(18): 1767-1778. |
9. | Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004, 173(2): 945-954. |
10. | Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5(12): 1365-1369. |
11. | Sugiura D, Maruhashi T, Okazaki IM, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science, 2019, 364(6440): 558-566. |
12. | Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002, 8(8): 793-800. |
13. | Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol, 2022, 40(6): 586-597. |
14. | Schönrich G, Raftery MJ. The PD-1/PD-L1 axis and virus infections: a delicate balance. Front Cell Infect Microbiol, 2019, 9: 207. |
15. | Matsuda K, Miyoshi H, Hiraoka K, et al. Clinicopathological value of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression in synovium of patients with rheumatoid arthritis. Clin Exp Med, 2018, 18(4): 487-494. |
16. | Matsumoto K, Inoue H, Nakano T, et al. B7-DC regulates asthmatic response by an IFN-gamma-dependent mechanism. J Immunol, 2004, 172(4): 2530-2541. |
17. | 钱美芳, 张艳, 尤倩, 等. 急性支气管哮喘病人外周血程序性死亡因子-1及其配体的表达. 安徽医药, 2022, 26(10): 2005-2009. |
18. | 蔡传旭, 刘晓清, 胡海圣, 等. 过敏性疾病患者外周血可溶性PD-L1的表达及意义. 实用医学杂志, 2018, 34(18): 3036-3040. |
19. | Bratke K, Fritz L, Nokodian F, et al. Differential regulation of PD-1 and its ligands in allergic asthma. Clin Exp Allergy, 2017, 47(11): 1417-1425. |
20. | McAlees JW, Lajoie S, Dienger K, et al. Differential control of CD4+ T cell subsets by the PD-1/PD-L1 axis in allergic asthma. Eur J Immunol, 2015, 45(4): 1019-1029. |
21. | Wang SH, Zissler UM, Buettner M, et al. An exhausted phenotype of TH2 cells is primed by allergen exposure, but not reinforced by allergen-specific immunotherapy. Allergy, 2021, 76(9): 2827-2839. |
22. | Ren YY, Dong HT, Liao JY, et al. The expression and function of programmed death-ligand 1 and related cytokines in neutrophilic asthma. Ann Transl Med, 2021, 9(23): 1727. |
23. | Douwes J, Gibson P, Pekkanen J, et al. Non-eosinophilic asthma: importance and possible mechanisms. Thorax, 2002, 57(7): 643-648. |
24. | Wang WB, Yen ML, Liu KJ, et al. Interleukin-25 mediates transcriptional control of PD-L1 via STAT3 in multipotent human mesenchymal stromal cells (hMSCs) to suppress Th17 responses. Stem Cell Reports, 2015, 5(3): 392-404. |
25. | Helou DG, Quach C, Fung M, et al. Human PD-1 agonist treatment alleviates neutrophilic asthma by reprogramming T cells. J Allergy Clin Immunol, 2022: S0091674922010491. |
26. | Chang WS, Kim JY, Kim YJ, et al. Cutting edge: programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol, 2008, 181(10): 6707-6710. |
27. | Akbari O, Stock P, Singh AK, et al. PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunology, 2010, 3(1): 81-91. |
28. | Hammad H, Lambrecht BN. The basic immunology of asthma. Cell, 2021, 184(6): 1469-1485. |
29. | Helou DG, Shafiei-Jahani P, Lo R, et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat Commun, 2020, 11(1): 3998. |
30. | Dahlgren MW, Jones SW, Cautivo KM, et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity, 2019, 50(3): 707-722. e6. |
31. | Taylor S, Huang Y, Mallett G, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med, 2017, 214(6): 1663-1678. |
32. | Schwartz C, Khan AR, Floudas A, et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J Exp Med, 2017, 214(9): 2507-2521. |
33. | Shen C, Hupin C, Froidure A, et al. Impaired ICOSL in human myeloid dendritic cells promotes Th2 responses in patients with allergic rhinitis and asthma. Clin Exp Allergy, 2014, 44(6): 831-841. |
34. | Kool M, van Nimwegen M, Willart MAM, et al. An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J Immunol, 2009, 183(2): 1074-1082. |
35. | Zhang X, Lewkowich IP, Köhl G, et al. A protective role for C5a in the development of allergic asthma associated with altered levels of B7-H1 and B7-DC on plasmacytoid dendritic cells. J Immunol, 2009, 182(8): 5123-5130. |
36. | Wang L, Pino-Lagos K, de Vries VC, et al. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci U S A, 2008, 105(27): 9331-9336. |
37. | Lin CL, Huang HM, Hsieh CL, et al. Jagged1-expressing adenovirus-infected dendritic cells induce expansion of Foxp3+ regulatory T cells and alleviate T helper type 2-mediated allergic asthma in mice. Immunology, 2019, 156(2): 199-212. |
38. | Girodet PO, Nguyen D, Mancini JD, et al. Alternative macrophage activation is increased in asthma. Am J Respir Cell Mol Biol, 2016, 55(4): 467-475. |
39. | Hamano S, Matsumoto K, Tonai K, et al. Effects of corticosteroid plus long-acting beta2-agonist on the expression of PD-L1 in double-stranded RNA-induced lung inflammation in mice. J Inflamm (Lond), 2017, 14: 2. |
40. | Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol, 2002, 169(10): 5538-5545. |
41. | Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A, 2003, 100(9): 5336-5341. |
42. | Roche WR, Beasley R, Williams JH, et al. Subepithelial fibrosis in the bronchi of asthmatics. Lancet, 1989, 1(8637): 520-524. |
43. | Mostaço-Guidolin LB, Osei ET, Ullah J, et al. Defective fibrillar collagen organization by fibroblasts contributes to airway remodeling in asthma. Am J Respir Crit Care Med, 2019, 200(4): 431-443. |
44. | Celada LJ, Kropski JA, Herazo-Maya JD, et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci Transl Med, 2018, 10(460): eaar8356. |
45. | Afroj T, Mitsuhashi A, Ogino H, et al. Blockade of PD-1/PD-L1 pathway enhances the antigen-presenting capacity of fibrocytes. J Immunol, 2021, 206(6): 1204-1214. |
46. | Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol, 2001, 2(3): 261-268. |
47. | Patsoukis N, Brown J, Petkova V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal, 2012, 5(230): ra46. |
48. | Strazza M, Adam K, Lerrer S, et al. SHP2 targets ITK downstream of PD-1 to inhibit T cell function. Inflammation, 2021, 44(4): 1529-1539. |
49. | Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Letters, 2004, 574(1-3): 37-41. |
50. | Fanelli G, Romano M, Nova-Lamperti E, et al. PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLoS Biol, 2021, 19(4): e3001199. |
51. | Usui T, Preiss JC, Kanno Y, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med, 2006, 203(3): 755-766. |
52. | Constant S, Pfeiffer C, Woodard A, et al. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med, 1995, 182(5): 1591-1596. |
53. | Amarnath S, Mangus CW, Wang JCM, et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med, 2011, 3(111): 111ra120-111ra120. |
54. | Yang K, Shrestha S, Zeng H, et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. immunity, 2013, 39(6): 1043-1056. |
- 1. 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版). 中华结核和呼吸杂志, 2020, 43(12): 1023-1048.
- 2. Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med, 1999, 160(3): 1001-1008.
- 3. Pichavant M, Charbonnier AS, Taront S, et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol, 2005, 115(4): 771-778.
- 4. Paplinska-Goryca M, Misiukiewicz-Stepien P, Proboszcz M, et al. The expressions of TSLP, IL-33, and IL-17A in monocyte derived dendritic cells from asthma and COPD patients are related to epithelial–macrophage interactions. Cells, 2020, 9(9): 1944.
- 5. Castellanos CA, Ren X, Gonzalez SL, et al. Lymph node-resident dendritic cells drive TH2 cell development involving MARCH1. Sci Immunol, 2021, 6(64): eabh0707.
- 6. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, 192(7): 1027-1034.
- 7. Galván Morales MA, Montero-Vargas JM, Vizuet-de-Rueda JC, et al. New insights into the role of PD-1 and its ligands in allergic disease. Int J Mol Sci, 2021, 22(21): 11898.
- 8. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med, 2016, 375(18): 1767-1778.
- 9. Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004, 173(2): 945-954.
- 10. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5(12): 1365-1369.
- 11. Sugiura D, Maruhashi T, Okazaki IM, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science, 2019, 364(6440): 558-566.
- 12. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002, 8(8): 793-800.
- 13. Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol, 2022, 40(6): 586-597.
- 14. Schönrich G, Raftery MJ. The PD-1/PD-L1 axis and virus infections: a delicate balance. Front Cell Infect Microbiol, 2019, 9: 207.
- 15. Matsuda K, Miyoshi H, Hiraoka K, et al. Clinicopathological value of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression in synovium of patients with rheumatoid arthritis. Clin Exp Med, 2018, 18(4): 487-494.
- 16. Matsumoto K, Inoue H, Nakano T, et al. B7-DC regulates asthmatic response by an IFN-gamma-dependent mechanism. J Immunol, 2004, 172(4): 2530-2541.
- 17. 钱美芳, 张艳, 尤倩, 等. 急性支气管哮喘病人外周血程序性死亡因子-1及其配体的表达. 安徽医药, 2022, 26(10): 2005-2009.
- 18. 蔡传旭, 刘晓清, 胡海圣, 等. 过敏性疾病患者外周血可溶性PD-L1的表达及意义. 实用医学杂志, 2018, 34(18): 3036-3040.
- 19. Bratke K, Fritz L, Nokodian F, et al. Differential regulation of PD-1 and its ligands in allergic asthma. Clin Exp Allergy, 2017, 47(11): 1417-1425.
- 20. McAlees JW, Lajoie S, Dienger K, et al. Differential control of CD4+ T cell subsets by the PD-1/PD-L1 axis in allergic asthma. Eur J Immunol, 2015, 45(4): 1019-1029.
- 21. Wang SH, Zissler UM, Buettner M, et al. An exhausted phenotype of TH2 cells is primed by allergen exposure, but not reinforced by allergen-specific immunotherapy. Allergy, 2021, 76(9): 2827-2839.
- 22. Ren YY, Dong HT, Liao JY, et al. The expression and function of programmed death-ligand 1 and related cytokines in neutrophilic asthma. Ann Transl Med, 2021, 9(23): 1727.
- 23. Douwes J, Gibson P, Pekkanen J, et al. Non-eosinophilic asthma: importance and possible mechanisms. Thorax, 2002, 57(7): 643-648.
- 24. Wang WB, Yen ML, Liu KJ, et al. Interleukin-25 mediates transcriptional control of PD-L1 via STAT3 in multipotent human mesenchymal stromal cells (hMSCs) to suppress Th17 responses. Stem Cell Reports, 2015, 5(3): 392-404.
- 25. Helou DG, Quach C, Fung M, et al. Human PD-1 agonist treatment alleviates neutrophilic asthma by reprogramming T cells. J Allergy Clin Immunol, 2022: S0091674922010491.
- 26. Chang WS, Kim JY, Kim YJ, et al. Cutting edge: programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol, 2008, 181(10): 6707-6710.
- 27. Akbari O, Stock P, Singh AK, et al. PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunology, 2010, 3(1): 81-91.
- 28. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell, 2021, 184(6): 1469-1485.
- 29. Helou DG, Shafiei-Jahani P, Lo R, et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat Commun, 2020, 11(1): 3998.
- 30. Dahlgren MW, Jones SW, Cautivo KM, et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity, 2019, 50(3): 707-722. e6.
- 31. Taylor S, Huang Y, Mallett G, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med, 2017, 214(6): 1663-1678.
- 32. Schwartz C, Khan AR, Floudas A, et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J Exp Med, 2017, 214(9): 2507-2521.
- 33. Shen C, Hupin C, Froidure A, et al. Impaired ICOSL in human myeloid dendritic cells promotes Th2 responses in patients with allergic rhinitis and asthma. Clin Exp Allergy, 2014, 44(6): 831-841.
- 34. Kool M, van Nimwegen M, Willart MAM, et al. An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J Immunol, 2009, 183(2): 1074-1082.
- 35. Zhang X, Lewkowich IP, Köhl G, et al. A protective role for C5a in the development of allergic asthma associated with altered levels of B7-H1 and B7-DC on plasmacytoid dendritic cells. J Immunol, 2009, 182(8): 5123-5130.
- 36. Wang L, Pino-Lagos K, de Vries VC, et al. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci U S A, 2008, 105(27): 9331-9336.
- 37. Lin CL, Huang HM, Hsieh CL, et al. Jagged1-expressing adenovirus-infected dendritic cells induce expansion of Foxp3+ regulatory T cells and alleviate T helper type 2-mediated allergic asthma in mice. Immunology, 2019, 156(2): 199-212.
- 38. Girodet PO, Nguyen D, Mancini JD, et al. Alternative macrophage activation is increased in asthma. Am J Respir Cell Mol Biol, 2016, 55(4): 467-475.
- 39. Hamano S, Matsumoto K, Tonai K, et al. Effects of corticosteroid plus long-acting beta2-agonist on the expression of PD-L1 in double-stranded RNA-induced lung inflammation in mice. J Inflamm (Lond), 2017, 14: 2.
- 40. Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol, 2002, 169(10): 5538-5545.
- 41. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A, 2003, 100(9): 5336-5341.
- 42. Roche WR, Beasley R, Williams JH, et al. Subepithelial fibrosis in the bronchi of asthmatics. Lancet, 1989, 1(8637): 520-524.
- 43. Mostaço-Guidolin LB, Osei ET, Ullah J, et al. Defective fibrillar collagen organization by fibroblasts contributes to airway remodeling in asthma. Am J Respir Crit Care Med, 2019, 200(4): 431-443.
- 44. Celada LJ, Kropski JA, Herazo-Maya JD, et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci Transl Med, 2018, 10(460): eaar8356.
- 45. Afroj T, Mitsuhashi A, Ogino H, et al. Blockade of PD-1/PD-L1 pathway enhances the antigen-presenting capacity of fibrocytes. J Immunol, 2021, 206(6): 1204-1214.
- 46. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol, 2001, 2(3): 261-268.
- 47. Patsoukis N, Brown J, Petkova V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal, 2012, 5(230): ra46.
- 48. Strazza M, Adam K, Lerrer S, et al. SHP2 targets ITK downstream of PD-1 to inhibit T cell function. Inflammation, 2021, 44(4): 1529-1539.
- 49. Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Letters, 2004, 574(1-3): 37-41.
- 50. Fanelli G, Romano M, Nova-Lamperti E, et al. PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLoS Biol, 2021, 19(4): e3001199.
- 51. Usui T, Preiss JC, Kanno Y, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med, 2006, 203(3): 755-766.
- 52. Constant S, Pfeiffer C, Woodard A, et al. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med, 1995, 182(5): 1591-1596.
- 53. Amarnath S, Mangus CW, Wang JCM, et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med, 2011, 3(111): 111ra120-111ra120.
- 54. Yang K, Shrestha S, Zeng H, et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. immunity, 2013, 39(6): 1043-1056.
-
Previous Article
库欣病合并肺栓塞一例并文献复习 -
Next Article
COVID-19合并或继发细菌感染的诊治研究进展