1. |
Vasse GF, Russo S, Barcaru A, et al. Collagen type I alters the proteomic signature of macrophages in a collagen morphology-dependent manner. Sci Rep, 2023, 13(1): 5670.
|
2. |
Yang JT, Pan X, Wang L, et al. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med, 2020, 26(1): 95.
|
3. |
Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer, 2009, 9(2): 108-122.
|
4. |
Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science, 2009, 324(5935): 1673-1677.
|
5. |
Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching. Curr Opin Cell Biol, 2009, 21(6): 864-870.
|
6. |
Haak AJ, Tan Q, Tschumperlin DJ. Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol, 2018, 73: 64-76.
|
7. |
Kishore A, Petrek M. Roles of macrophage polarization and macrophage-derived miRNAs in pulmonary fibrosis. Front Immunol, 2021, 12: 678457.
|
8. |
Cheng PY, Li SY, Chen HY. Macrophages in lung injury, repair, and fibrosis. Cells, 2021, 10(2): 436.
|
9. |
Shenderov K, Collins SL, Powell JD, et al. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest, 2021, 131(2): e143226.
|
10. |
Aran D, Looney AP, Liu LQ, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol, 2019, 20(2): 163-172.
|
11. |
Orsini EM, Perelas A, Southern BD, et al. Stretching the function of innate immune cells. Front Immunol, 2021, 12: 767319.
|
12. |
Shan SZ, Fang B, Zhang YF, et al. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway. FASEB J, 2019, 33(12): 13254-13266.
|
13. |
Joshi H, Almgren-Bell A, Anaya EP, et al. L-plastin enhances NLRP3 inflammasome assembly and bleomycin-induced lung fibrosis. Cell Rep, 2022. 38(11): 110507.
|
14. |
Wang ZY, Li XN, Chen H, et al. Resveratrol alleviates bleomycin-induced pulmonary fibrosis via suppressing HIF-1α and NF-κB expression. Aging (Albany NY), 2021, 13(3): 4605-4616.
|
15. |
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3): 450-462.
|
16. |
Chuliá-Peris L, Carreres-Rey C, Gabasa M, et al. Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play. Int J Mol Sci, 2022, 23(13): 6894.
|
17. |
John AE, Joseph C, Jenkins G, et al. COVID-19 and pulmonary fibrosis: a potential role for lung epithelial cells and fibroblasts. Immunol Rev, 2021, 302(1): 228-240.
|
18. |
Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol, 2022, 17: 515-546.
|
19. |
Zhang T, Zhang J, Lv C, et al. Senescent AECⅡ and the implication for idiopathic pulmonary fibrosis treatment. Front Pharmacol, 2022, 13: 1059434.
|
20. |
Warheit-Niemi HI, Hult EM, Moore BB. A pathologic two-way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunology, 2019, 8(6): e1065.
|
21. |
Wu HJ, Yu YY, Huang HW, et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell, 2021, 184(3): 845-846.
|
22. |
Albert RK, Smith B, Perlman CE, et al. Is progression of pulmonary fibrosis due to ventilation-induced lung injury? Am J Respir Crit Care Med, 2019, 200(2): 140-151.
|
23. |
Zhang R, Pan Y, Fanelli V, et al. Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway. Am J Respir Crit Care Med, 2015, 192(3): 315-323.
|
24. |
Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med, 2012, 40(2): 510-517.
|
25. |
Liu Z, Wu HJ, Jiang KW, et al. MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep, 2016, 16(7): 1810-1819.
|
26. |
Gu X, Han YY, Yang CY, et al. Activated AMPK by metformin protects against fibroblast proliferation during pulmonary fibrosis by suppressing FOXM1. Pharmacol Res, 2021, 173: 105844.
|
27. |
Ou SC, Bai KJ, Cheng WH, et al. TGF-β induced CTGF expression in human lung epithelial cells through ERK, ADAM17, RSK1, and C/EBPβ pathways. Int J Mol Sci, 2020, 21(23): 9084.
|
28. |
Liu YJ, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol, 2009, 4(3): 299-321.
|
29. |
Huang JQ, Zhang H, Guo XW, et al. Mechanically activated calcium channel PIEZO1 modulates radiation-induced epithelial-mesenchymal transition by forming a positive feedback with TGF-β1. Front Mol Biosci, 2021, 8: 725275.
|
30. |
Fang Y, Wu D, Birukov KG. Mechanosensing and mechanoregulation of endothelial cell functions. Compr Physiol, 2019, 9(2): 873-904.
|
31. |
Lv Z, Wang Y, Liu YJ, et al. NLRP3 inflammasome activation contributes to mechanical stretch-induced endothelial-mesenchymal transition and pulmonary fibrosis. Crit Care Med, 2018, 46(1): e49-e58.
|
32. |
Neto F, Klaus-Bergmann A, Ong YT, et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. Elife, 2018, 7: e31037.
|
33. |
Davis MJ, Earley S, Li YS, et al. Vascular mechanotransduction. Physiol Rev, 2023, 103(2): 1247-1421.
|
34. |
Suzuki M, Naruse K, Asano Y, et al. Up-regulation of integrin β3 expression by cyclic stretch in human umbilical endothelial cells. Biochem Biophys Res Commun, 1997, 239(2): 372-376.
|
35. |
Martin M, Zhang J, Miao YF, et al. Role of endothelial cells in pulmonary fibrosis via SREBP2 activation. JCI Insight, 2021, 6(22): e125635.
|
36. |
Yan J, Wang WB, Fan YJ, et al. Cyclic stretch induces vascular smooth muscle cells to secrete connective tissue growth factor and promote endothelial progenitor cell differentiation and angiogenesis. Front Cell Dev Biol, 2020, 8: 606989.
|
37. |
Xie F, Wen GN, Sun WD, et al. Mechanical stress promotes angiogenesis through fibroblast exosomes. Biochem Biophys Res Commun, 2020, 533(3): 346-353.
|
38. |
Zhou Y, Thannickal VJ. Demystifying the enigmatic fibroblast in pulmonary fibrosis. Am J Respir Cell Mol Biol, 2023, 69(1): 1-2.
|
39. |
Geng Y, Li L, Yan J, et al. PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis. Nat Commun, 2022, 13(1): 7114.
|
40. |
Zhao MY, Wang LQ, Wang MZ, et al. Targeting fibrosis: mechanisms and cilinical trials. Signal Transduct Target Ther, 2022, 7(1): 206.
|
41. |
Huang XW, Yang NH, Fiore VF, et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol, 2012, 47(3): 340-348.
|
42. |
Hayward MK, Muncie JM, Weaver VM. Tissue mechanics in stem cell fate, development, and cancer. Dev Cell, 2021, 56(13): 1833-1847.
|
43. |
Wang CC, Yang JT. Mechanical forces: the missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol, 2022, 101(3): 151234.
|
44. |
Doyle AD, Nazari SS, Yamada KM. Cell-extracellular matrix dynamics. Phys Biol, 2022, 19(2): 021002.
|
45. |
Selig M, Lauer JC, Hart ML, et al. Mechanotransduction and stiffness-sensing: mechanisms and opportunities to control multiple molecular aspects of cell phenotype as a design cornerstone of cell-instructive biomaterials for articular cartilage repair. Int J Mol Sci, 2020, 21(15): 5399.
|
46. |
Nho RS, Ballinger MN, Rojas MM, et al. Biomechanical force and cellular stiffness in lung fibrosis. Am J Pathol, 2022, 192(5): 750-761.
|
47. |
Wang Y, Shi RT, Zhai R, et al. Matrix stiffness regulates macrophage polarization in atherosclerosis. Pharmacol Res, 2022, 179: 106236.
|
48. |
Ao MF, Brewer BM, Yang LJ, et al. Stretching fibroblasts remodels fibronectin and alters cancer cell migration. Sci Rep, 2015, 5: 8334.
|
49. |
Park SJ, Kim TH, Lee K, et al. Kurarinone attenuates BLM-induced pulmonary fibrosis via inhibiting TGF-β signaling pathways. Int J Mol Sci, 2021, 22(16): 8388.
|