1. |
Aliberti S, Dela Cruz CS, Amati F, et al. Restrepo MI. Community-acquired pneumonia. Lancet, 2021, 398(10303): 906-919.
|
2. |
Yende S, D'Angelo G, Kellum JA, et al. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med, 2008, 177(11): 1242-1247.
|
3. |
Waterer GW. Community-acquired pneumonia: genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Semin Respir Crit Care Med, 2012, 33(3): 257-265.
|
4. |
曾谷雨, 袁晋青. 高密度脂蛋白的蛋白质组学在冠心病中的研究进展. 中国分子心脏病学杂志, 2022, 22(04): 4853-4857.
|
5. |
Long J, Yang H, Yang Z, et al. Integrated biomarker profiling of the metabolome associated with impaired fasting glucose and type 2 diabetes mellitus in large-scale Chinese patients. Clin Transl Med, 2021, 11(6): e432.
|
6. |
Luo P, Yin P, Hua R, et al. A Large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology, 2018, 67(2): 662-675.
|
7. |
Nascentes Melo LM, Lesner NP, Sabatier M, et al. Emerging metabolomic tools to study cancer metastasis. Trends Cancer, 2022, 8(12): 988-1001.
|
8. |
Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nat Rev Genet, 2022, 23(12): 715-727.
|
9. |
Nicholson JK, Lindon JC. Systems biology: Metabonomics. Nature, 2008, 455(7216): 1054-1056.
|
10. |
Antcliffe D, Gordon AC. Metabonomics and intensive care. Crit Care, 2016, 20: 68.
|
11. |
Bujak R, Struck-Lewicka W, Markuszewski MJ, et al. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal, 2015, 113: 108-120.
|
12. |
Wang X, Nijman R, Camuzeaux S, et al. Plasma lipid profiles discriminate bacterial from viral infection in febrile children. Sci Rep, 2019, 9(1): 17714.
|
13. |
Banoei Mohammad M, Vogel Hans J, Weljie Aalim M, et al. Plasma lipid profiling for the prognosis of 90-day mortality, in-hospital mortality, ICU admission, and severity in bacterial community-acquired pneumonia (CAP). Crit Care,24, 461 (2020). https://doi.org/10.1186/s13054-020-03147-3.
|
14. |
Arshad H, Alfonso JCL, Franke R, et al. Decreased plasma phospholipid concentrations and increased acid sphingomyelinase activity are accurate biomarkers for community-acquired pneumonia. J Transl Med, 2019, 17(1): 365.
|
15. |
Slupsky CM, Cheypesh A, Chao DV, et al. Streptococcus pneumoniae and Staphylococcus aureus pneumonia induce distinct metabolic responses. J Proteome Res, 2009, 8(6): 3029-3036.
|
16. |
Chandler JD, Hu X, Ko EJ, et al. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Physiol Regul Integr Comp Physiol, 2016, 311(5): R906-R916.
|
17. |
Tisoncik-Go J, Gasper DJ, Kyle JE, et al. Integrated Omics Analysis of Pathogenic Host Responses during Pandemic H1N1 Influenza Virus Infection: The Crucial Role of Lipid Metabolism. Cell Host Microbe, 2016, 19(2): 254-266.
|
18. |
Yan B, Chu H, Yang D, et al. Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication. Viruses, 2019, 11(1): 73.
|
19. |
Fraser DD, Slessarev M, Martin CM, et al. Metabolomics Profiling of Critically Ill Coronavirus Disease 2019 Patients: Identification of Diagnostic and Prognostic Biomarkers. Crit Care Explor, 2020, 2(10): e0272.
|
20. |
Wu D, Shu T, Yang X, et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl Sci Rev, 2020, 7(7): 1157-1168.
|
21. |
Baiges-Gaya G, Iftimie S, Castañé H, et al. Combining Semi-Targeted Metabolomics and Machine Learning to Identify Metabolic Alterations in the Serum and Urine of Hospitalized Patients with COVID-19. Biomolecules, 2023, 13(1): 163.
|
22. |
Valdés A, Moreno LO, Rello SR, et al. Metabolomics study of COVID-19 patients in four different clinical stages. Sci Rep, 2022, 12(1): 1650.
|
23. |
Jia H, Liu C, Li D, et al. Metabolomic analyses reveal new stage-specific features of COVID-19. Eur Respir J, 2022, 59(2): 2100284.
|
24. |
Li J, Luu LDW, Wang X, et al. Metabolomic analysis reveals potential biomarkers and the underlying pathogenesis involved in Mycoplasma pneumoniae pneumonia. Emerg Microbes Infect, 2022, 11(1): 593-605.
|
25. |
Zhou A, Ni J, Xu Z, et al. Application of (1)h NMR spectroscopy-based metabolomics to sera of tuberculosis patients. J Proteome Res, 2013, 12(10): 4642-4649.
|
26. |
Zhou A, Ni J, Xu Z, et al. Metabolomics specificity of tuberculosis plasma revealed by (1)H NMR spectroscopy. Tuberculosis (Edinb), 2015, 95(3): 294-302.
|
27. |
Wang X, Wu Z, Zeng J, et al. Untargeted metabolomics of pulmonary tuberculosis patient serum reveals potential prognostic markers of both latent infection and outcome. Front Public Health, 2022, 10: 962510.
|
28. |
Laiakis EC, Morris GA, Fornace AJ, et al. Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study. PLoS One, 2010, 5(9): e12655.
|
29. |
To KK, Lee KC, Wong SS, et al. Lipid metabolites as potential diagnostic and prognostic biomarkers for acute community acquired pneumonia. Diagn Microbiol Infect Dis, 2016, 85(2): 249-254.
|
30. |
Seymour CW, Yende S, Scott MJ, et al. Metabolomics in pneumonia and sepsis: an analysis of the GenIMS cohort study. Intensive Care Med, 2013, 39(8): 1423-1434.
|
31. |
Ning P, Zheng Y, Luo Q, et al. Metabolic profiles in community-acquired pneumonia: developing assessment tools for disease severity. Crit Care, 2018, 22(1): 130.
|
32. |
Ma X, Chen L, He Y, et al. Targeted lipidomics reveals phospholipids and lysophospholipids as biomarkers for evaluating community-acquired pneumonia. Ann Transl Med, 2022, 10(7): 395.
|