Citation: 陶雨寒, 毛辉. 呼出气挥发性有机物在呼吸系统非感染性疾病中的应用. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(8): 599-604. doi: 10.7507/1671-6205.202304046 Copy
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. | Global Initiative for Asthma[EB/OL]. [2023-03-19]. https://ginasthma.org/. |
8. | |
9. | |
10. | |
11. | |
12. | |
13. | |
14. | |
15. | Brinkman P, Wagener AH, Hekking PP, et al. Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma. J Allergy Clin Immunol, 2019, 143(5): 1811-1820. e7. |
16. | |
17. | |
18. | |
19. | |
20. | |
21. | |
22. | |
23. | |
24. | |
25. | |
26. | |
27. | Van Berkel JJ, Dallinga JW, Möller GM, , et al. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med, 2010, 104(4): 557-563. |
28. | |
29. | |
30. | |
31. | |
32. | |
33. | Binson VA, Subramoniam M, Mathew L. Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose. J Breath Res, 2021, 15(4). |
34. | |
35. | |
36. | |
37. | Cancer[EB/OL]. [2023-03-20]. https://www.who.int/news-room/fact-sheets/detail/cancer. |
38. | |
39. | |
40. | |
41. | |
42. | |
43. | |
44. | |
45. | |
46. | Larracy R, Phinyomark A, Scheme E. Infrared cavity ring-down spectroscopy for detecting non-small cell lung cancer in exhaled breath. J Breath Res, 2022, 16(2). |
47. | |
48. | |
49. | |
50. | |
51. | |
52. | |
53. | |
54. | |
55. | |
56. | |
57. | |
58. | |
59. | |
60. | |
61. | |
62. | |
63. | |
64. | |
65. | Belperio JA, Shaikh F, Abtin FG, et al. Diagnosis and Treatment of Pulmonary Sarcoidosis: A Review. JAMA, 2022 Mar 1;327(9): 856-867. |
66. | |
67. | |
68. | |
69. | |
70. | |
71. | |
72. | |
73. | |
74. | |
75. | |
76. | |
77. | |
78. | |
79. | Woollam M, Siegel AP, Grocki P, et al. Preliminary method for profiling volatile organic compounds in breath that correlate with pulmonary function and other clinical traits of subjects diagnosed with cystic fibrosis: a pilot study. J Breath Res, 2022, 16(2). |
80. | |
81. | |
82. |
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7. Global Initiative for Asthma[EB/OL]. [2023-03-19]. https://ginasthma.org/.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15. Brinkman P, Wagener AH, Hekking PP, et al. Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma. J Allergy Clin Immunol, 2019, 143(5): 1811-1820. e7.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27. Van Berkel JJ, Dallinga JW, Möller GM, , et al. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med, 2010, 104(4): 557-563.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33. Binson VA, Subramoniam M, Mathew L. Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose. J Breath Res, 2021, 15(4).
- 34.
- 35.
- 36.
- 37. Cancer[EB/OL]. [2023-03-20]. https://www.who.int/news-room/fact-sheets/detail/cancer.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46. Larracy R, Phinyomark A, Scheme E. Infrared cavity ring-down spectroscopy for detecting non-small cell lung cancer in exhaled breath. J Breath Res, 2022, 16(2).
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65. Belperio JA, Shaikh F, Abtin FG, et al. Diagnosis and Treatment of Pulmonary Sarcoidosis: A Review. JAMA, 2022 Mar 1;327(9): 856-867.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79. Woollam M, Siegel AP, Grocki P, et al. Preliminary method for profiling volatile organic compounds in breath that correlate with pulmonary function and other clinical traits of subjects diagnosed with cystic fibrosis: a pilot study. J Breath Res, 2022, 16(2).
- 80.
- 81.
- 82.
-
Previous Article
吡非尼酮和尼达尼布在新型冠状病毒感染后肺纤维化中的应用进展 -
Next Article
手持风扇疗法在缓解呼吸困难中的研究现状