1. |
崔亚楠, 陈平, 陈燕. 2018年版慢性阻塞性肺疾病全球倡议诊断及处理和预防策略解读. 中华结核和呼吸杂志, 2018, 41(3): 236-239.
|
2. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin, 2021, 71(1): 7-33.
|
3. |
Park HY, Kang D, Shin SH, et al. Chronic obstructive pulmonary disease and lung cancer incidence in never smokers: a cohort study. Thorax, 2020, 75(6): 506-509.
|
4. |
Husebø GR, Nielsen R, Hardie J, et al. Risk factors for lung cancer in COPD - results from the Bergen COPD cohort study. Respir Med, 2019, 152: 81-88.
|
5. |
Labaki WW, Xia M, Murray S, et al. Quantitative emphysema on low-dose CT imaging of the chest and risk of lung cancer and airflow obstruction: an analysis of the National Lung Screening Trial . Chest, 2021, 159(5): 1812-1820.
|
6. |
Serban KA, Pratte KA, Bowler RP. Protein biomarkers for COPD outcomes. Chest, 2021, 159(6): 2244-2253.
|
7. |
Hu XL, Xu ST, Wang XC, et al. Status of coexisting chronic obstructive pulmonary disease and its clinic pathological features in patients undergoing lung cancer surgery: a cross-sectional study of 3, 006 cases. J Thorac Dis, 2018, 10(4): 2403-2411.
|
8. |
Media AS, Persson M, Tajhizi N, et al. Chronic obstructive pulmonary disease and comorbidities' influence on mortality in non-small cell lung cancer patients. Acta Oncol, 2019, 58(8): 1102-1106.
|
9. |
Su ZX, Jiang Y, Li CC, et al. Relationship between lung function and lung cancer risk: a pooled analysis of cohorts plus Mendelian randomization study. J Cancer Res Clin Oncol, 2021, 147(10): 2837-2849.
|
10. |
Carr LL, Jacobson S, Lynch DA, et al. Features of COPD as predictors of lung cancer. Chest, 2018, 153(6): 1326-1335.
|
11. |
Yasuura Y, Terada Y, Mizuno K, et al. Quantitative severity of emphysema is related to the prognostic outcome of early-stage lung cancer. Eur J Cardiothorac Surg, 2022, 62(5): ezac499.
|
12. |
Fortis S, Comellas AP, Bhatt SP, et al. Ratio of FEV1/slow vital capacity of < 0.7 is associated with clinical, functional, and radiologic features of obstructive lung disease in smokers with preserved lung function. Chest, 2021, 160(1): 94-103.
|
13. |
Parris BA, O'Farrell HE, Fong KM, et al. Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J Thoracic Dis, 2019, 11(Suppl 17): S2155-S2172.
|
14. |
Forder A, Zhuang R, Souza VGP, et al. Mechanisms contributing to the comorbidity of COPD and lung cancer. Int J Mol Sci, 2023, 24(3): 2859.
|
15. |
Pouwels SD, Hesse L, Wu XH, et al. LL-37 and HMGB1 induce alveolar damage and reduce lung tissue regeneration via RAGE. Am J Physiol Lung Cell Mol Physiol, 2021, 321(4): L641-L652.
|
16. |
袁雪枚, 耑冰, 李萍, 等. 慢性阻塞性肺疾病合并肺动脉高压患者血清活性氧和硫化氢水平及肺组织还原型烟酰胺腺嘌呤二核苷酸氧化酶-4和胱硫醚-γ-裂解酶表达及其意义. 中华内科杂志, 2019, 58(10): 770-776.
|
17. |
王曦, 李萍, 耑冰, 等. RYR2、FKBP12.6及CaMK-Ⅱ在COPD患者肺组织中的表达研究. 国际呼吸杂志, 2020, 40(2): 94-101.
|
18. |
Sharma A, Kaur S, Sarkar M, et al. The AGE-RAGE axis and RAGE genetics in chronic obstructive pulmonary disease. Clin Rev Allergy Immunol, 2021, 60(2): 244-258.
|
19. |
Liao YF, Yin S, Chen ZQ, et al. High glucose promotes tumor cell proliferation and migration in lung adenocarcinoma via the RAGE NOXs pathway. Mol Med Rep, 2018, 17(6): 8536-8541.
|
20. |
Waghela BN, Vaidya FU, Ranjan K, et al. AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol Cell Biochem, 2021, 476(2): 585-598.
|