1. |
王珏, 王彬杰, 杨加彩, 等. 新型冠状病毒肺炎诱发肺纤维化的机制及相关治疗研究进展. 中华烧伤杂志, 2020, 36(8): 691-697.
|
2. |
Eapen MS, Lu WY, Gaikwad AV, et al. Endothelial to mesenchymal transition: a precursor to post-COVID-19 interstitial pulmonary fibrosis and vascular obliteration? Eur Respir J, 2020, 56(4): 2003167.
|
3. |
Parimon T, Yao CF, Stripp BR, et al. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int J Mol Sci, 2020, 21(7): 2269.
|
4. |
Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, 2013, 123(7): 3025-3036.
|
5. |
Sun PF, Qie SY, Liu ZJ, et al. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J Med Virol, 2020, 92(6): 612-617.
|
6. |
Rout-Pitt N, Farrow N, Parsons D, et al. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res, 2018, 19(1): 136.
|
7. |
Giacomelli C, Piccarducci R, Marchetti L, et al. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem pharmaco, 2021, 193: 114812.
|
8. |
Wu Z, Yang LL, Cai L, et al. Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse. Respir Res, 2007, 8(1): 1.
|
9. |
Namba T, Tanaka KI, Ito Y, et al. Induction of EMT-like phenotypes by an active metabolite of leflunomide and its contribution to pulmonary fibrosis. Cell Death Differ, 2010, 17(12): 1882-1895.
|
10. |
Zhou GF, Dada LA, Wu MH, et al. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1120-1130.
|
11. |
Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, 2020, 323(16): 1574-1581.
|
12. |
Desai SR, Wells AU, Rubens MB, et al. Acute respiratory distress syndrome: CT abnormalities at long-term follow-up. Radiology, 1999, 210(1): 29-35.
|
13. |
Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care med, 1998, 157(1): 294-323.
|
14. |
Yang YY, Hu LS, Xia HF, et al. Resolvin D1 attenuates mechanical stretch-induced pulmonary fibrosis via epithelial-mesenchymal transition. Am J Physio Lung Cell Mol Physiol, 2019, 316(6): L1013-L1024.
|
15. |
Peng L, Wen L, Shi QF, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell death Dis, 2020, 11(11): 978.
|
16. |
Liu YZ, Xie XH, Wang P, et al. Mannan-binding lectin reduces epithelial-mesenchymal transition in pulmonary fibrosis via inactivating the store-operated calcium entry machinery. J Innate Immun, 2022, 15(1): 1-13.
|
17. |
Zhao LK, Mu BY, Zhou RW, et al. Iguratimod ameliorates bleomycin-induced alveolar inflammation and pulmonary fibrosis in mice by suppressing expression of matrix metalloproteinase-9. Int J Rheum Dis, 2019, 22(4): 686-694.
|
18. |
Žarković N, Orehovec B, Milković L, et al. Preliminary findings on the association of the lipid peroxidation product 4-hydroxynonenal with the lethal outcome of aggressive COVID-19. Antioxidants (Basel), 2021, 10(9): 1341.
|
19. |
Otoupalova E, Smith S, Cheng GJ, et al. Oxidative stress in pulmonary fibrosis. Compr Physiol, 2020, 10(2): 509-547.
|
20. |
Fusco R, Cordaro M, Genovese T, et al. Adelmidrol: a new promising antioxidant and anti-inflammatory therapeutic tool in pulmonary fibrosis. Antioxidants (Basel), 2020, 9(7): 601.
|
21. |
Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases Eur Respir Rev, 2015, 24(135): 102-114.
|
22. |
Henry MT, McMahon K, Mackarel AJ, et al. Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. Eur Respir J, 2002, 20(5): 1220-1227.
|
23. |
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med, 2020, 8(8): 807-815.
|
24. |
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006, 69(3): 562-573.
|
25. |
Craig VJ, Zhang L, Hagood JS, et al. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol, 2015, 53(5): 585-600.
|
26. |
Oatis D, Simon-Repolski E, Balta C, et al. Cellular and Molecular Mechanism of Pulmonary Fibrosis Post-COVID-19: Focus on Galectin-1, -3, -8, -9. Int J Mol Sci, 2022, 23(15): 8210.
|
27. |
Ghazavi A, Ganji A, Keshavarzian N, et al. Cytokine profile and disease severity in patients with COVID-19. Cytokine, 2021, 137: 155323.
|
28. |
Tatler AL, Jenkins G. TGF-β activation and lung fibrosis. Proc Am Thorac Soc, 2012, 9(3): 130-136.
|
29. |
Tatler AL, Goodwin AT, Gbolahan O, et al. Amplification of TGFβ Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis. PloS One, 2016, 11(8): e0158047.
|
30. |
Meliopoulos VA, Van de Velde LA, Van de Velde NC, et al. An epithelial integrin regulates the amplitude of protective lung interferon responses against multiple respiratory pathogens. PLoS Pathog, 2016, 12(8): e1005804.
|
31. |
P KM, Sivashanmugam K, Kandasamy M, et al. Repurposing of histone deacetylase inhibitors: A promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci, 2021, 266: 118883.
|
32. |
Antoniades HN, Bravo MA, Avila RE, et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest, 1990, 86(4): 1055-1064.
|
33. |
Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223): 497-506.
|
34. |
Bickelhaupt S, Erbel C, Timke C, et al. Effects of CTGF blockade on attenuation and reversal of radiation-induced pulmonary fibrosis. J Natl Cancer Inst, 2017, 109(8).
|
35. |
Xu JC, Xu XY, Jiang LN, et al. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res, 2020, 21(1): 182.
|
36. |
Bonniaud P, Margetts PJ, Kolb M, et al. Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am J Respi Crit Care Med, 2003, 168(7): 770-778.
|
37. |
Coomes EA, Haghbayan H. Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev Med Virol, 2020, 30(6): 1-9.
|
38. |
Takizawa H, Satoh M, Okazaki H, et al. Increased IL-6 and IL-8 in bronchoalveolar lavage fluids (BALF) from patients with sarcoidosis: correlation with the clinical parameters. Clin Exp Immunol, 1997, 107(1): 175-181.
|
39. |
Crestani B, Cornillet P, Dehoux M, et al. Alveolar type II epithelial cells produce interleukin-6 in vitro and in vivo. Regulation by alveolar macrophage secretory products. J Clin Invest, 1994, 94(2): 731-740.
|
40. |
Montazersaheb S, Hosseiniyan Khatibi SM, et al. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J, 2022, 19(1): 92.
|
41. |
Gralinski L E, Bankhead A 3rd, Jeng S, et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio, 2013, 4(4): e00271-13.
|
42. |
Shmakova AA, Popov VS, Romanov IP, et al. Urokinase system in pathogenesis of pulmonary fibrosis: a hidden threat of COVID-19. Int J Mol Sci, 2023, 24(2): 1382.
|
43. |
Sode BF, Dahl M, Nielsen SF, et al. Venous thromboembolism and risk of idiopathic interstitial pneumonia: a nationwide study. Am J Respir Crit Care Med, 2010, 181(10): 1085-1092.
|
44. |
Qin ZN, Liu FM, Blair R, et al. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics, 2021, 11(16): 8076-8091.
|
45. |
Shea BS, Probst CK, Brazee PL, et al. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight, 2017, 2(9): e86608.
|
46. |
John AE, Joseph C, Jenkins G, et al. COVID-19 and pulmonary fibrosis: a potential role for lung epithelial cells and fibroblasts. Immunol Rev, 2021, 302(1): 228-240.
|
47. |
DeMaio L, Buckley ST, Krishnaveni MS, et al. Ligand-independent transforming growth factor-β type I receptor signalling mediates type I collagen-induced epithelial-mesenchymal transition. J Pathol, 2012, 226(4): 633-644.
|
48. |
Rendeiro AF, Ravichandran H, Bram Y, et al. The spatial landscape of lung pathology during COVID-19 progression. Nature, 2021, 593(7860): 564-569.
|
49. |
Moodley YP, Misso NL, Scaffidi AK, et al. Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol, 2003, 29(4): 490-498.
|
50. |
Bahri S, Mies F, Ben Ali R, et al. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts. PLoS One, 2017, 12(9): e0184368.
|
51. |
Liao MF, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 2020, 26(6): 842-844.
|
52. |
Ogawa T, Shichino S, Ueha S, et al. Macrophages in lung fibrosis. Int Immunol, 2021, 33(12): 665-671.
|
53. |
Heukels P, Moor CC, von der Thüsen JH, et al. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med, 2019, 147: 79-91.
|
54. |
Joshi N, Watanabe S, Verma R, et al. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur Respir J, 2020, 55(1): 1900646.
|
55. |
Yang JB, Agarwal M, Ling S, et al. Diverse injury pathways induce alveolar epithelial cell CCL2/12, which promotes lung fibrosis. Am J Respir Cell Mol Biol, 2020, 62(5): 622-632.
|
56. |
Matsuhira T, Nishiyama O, Tabata Y, et al. A novel phosphodiesterase 4 inhibitor, AA6216, reduces macrophage activity and fibrosis in the lung. Eur J Pharmacol, 2020, 885: 173508.
|