Citation: 李蔚然, 徐英华. 阻塞性睡眠呼吸暂停诱导心脏重塑的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(11): 823-827. doi: 10.7507/1671-6205.202404035 Copy
1. | 阻塞性睡眠呼吸暂停合并代谢综合征诊疗专家共识组. 阻塞性睡眠呼吸暂停合并代谢综合征诊疗专家共识(2022). 中华耳鼻咽喉头颈外科杂志, 2023, 58(2): 99-110. |
2. | Arnaud C, Billoir E, Junior AF, et al. Chronic intermittent hypoxia induced cardiovascular and renal dysfunction: from adaptation to maladaptation. Physiol, 2023, 601(24): 5553-5577. |
3. | Tadic M, Cuspidi C. Obstructive sleep apnea and right ventricular remodeling: do we have all the answers? Clin Med, 2023, 12(6): 2421. |
4. | Li Q, Xu Y, Li X, et al. Inhibition of Rho-kinase ameliorates myocardial remodeling and fibrosis in pressure overload and myocardial infarction: role of TGF-beta1-TAK1. Toxicol Lett, 2012, 211(2): 91-97. DOI: org/10.1016/j.toxlet.2012.03.006. |
5. | Anilkumar N, Sirker A, Shah AM. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci (Landmark Ed), 2009, 14(8): 3168-3187. |
6. | González A, Richards AM, Boer RA, et al. Cardiac remodelling-Part 1: from cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail, 2022, 24(6): 927-943. |
7. | Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation, 2013, 128(4): 388-400. |
8. | Rademakers FE. Magnetic resonance imaging in cardiology. Lancet, 2003, 361(9355): 359-360. |
9. | Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. |
10. | Bizanti A, Zhang Y, Toledo Z, et al. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. Physiol, 2024, 602(1): 49-71. |
11. | Kumar P, Prabhakar NR. Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol, 2012, 2(1): 141-219. |
12. | Prabhakar NR, Peng YJ, Nanduri J. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. Physiol, 2023, 601(24): 5481-5494. |
13. | Peng YJ, Overholt JL, Kline D, et al. Induction of sensory longterm facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad SciUSA, 2003, 100(17): 10073-10078. |
14. | Peng YJ, Yuan G, Ramakrishnan D, et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. Physiol, 2006, 577(2): 705-716. |
15. | Silva AQ, Schreihofer AM. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J Physiol, 2011, 589(6): 1463-1476. |
16. | Iturriaga R. Carotid Body Ablation: a new target to address central autonomic dysfunction. Curr Hypertens, 2018, 20(6): 53. |
17. | Arias-Mayenco I, Gonzalez-Rodriguez P, Torres-Torrelo, et al. Acute O(2) sensing: Role of coenzyme QH(2)/Q ratio and mitochondrial ROS compartmentalization. Cell Metabolism, 2018, 28(1): 145-158. |
18. | Scala O, Paolillo S, Formisano R, et al. Sleep-disordered breathing, impaired cardiac adrenergic innervation and prognosis in heart failure. British Cardiac Society, 2016, 102(22): 1813-1819. |
19. | 周祖东, 朱承莹, 高振云, 等. 老年阻塞性睡眠呼吸暂停低通气综合征患者迷走神经张力与病情严重程度的相关性分析. 实用心脑肺血管病杂志, 2021, 29(8): 60-65. |
20. | Bradley TD, Floras JS. Sleepapnea and heart failure: part II: central sleep apnea. Circulation, 2003, 107(13): 1822-1826. |
21. | Wang X, Li Z, Du Y, et al. lncRNA Mirt1: a critical regulatory factor in chronic intermittent hypoxia exaggerated Post-MI cardiac remodeling. Front Genet, 2022, 13: 818823. |
22. | 白巧会, 蒋绒, 李永霞. 不同严重程度阻塞性睡眠呼吸暂停与代谢综合征的相关性研究. 中国老年保健医学, 2023, 21(2): 41-45. |
23. | Heffernan A, Duplancic D, Kumric M, et al. Metabolic crossroads: unveiling the complex interactions between obstructive sleep apnoea and metabolic syndrome. Int J Mol Sci, 2024, 25(6): 3243. |
24. | Avelar E, Cloward TV, Walker JM, et al. Left ventricular hypertrophy in severe obesity: interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension, 2007, 49(1): 34-39. |
25. | Gaucher J, Montellier E, Vial G, et al. Long-term intermittent hypoxia in mice induces inflammatory pathways implicated in sleep apnea and steatohepatitis in humans. iScience, 2024, 9,27(2): 108837. |
26. | 赵哲, 刘霖, 赵力博, 等. 老年男性阻塞性睡眠呼吸暂停患者合并代谢综合征相关不良心血管事件的预后. 中国临床保健杂志, 2023, 26(2): 184-188. |
27. | Arnaud C, Bochaton T, Pépin JL, et al. Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Arch Cardiovasc Dis, 2020, 113(5): 350-358. |
28. | Zeng X, Guo R, Dong M, et al. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression. J Transl Med, 2018, 16(1): 106. |
29. | Lee M, Wang Y, Mak J, et al. Intermittent hypoxia induces NF-κB-dependent endothelial activation via adipocyte-derived mediators. Am J Physiol Cell Physiol, 2016, 310(6): 446-455. |
30. | Ryan, S. Mechanisms of cardiovascular disease in obstructive sleep apnoea. J Thorac Dis, 2018, 10(34): 4201-4211. |
31. | Khamsai S, Chootrakool A, Limpawattana P, et al. Hypertensive crisis in patients with obstructive sleep apnea-induced hypertension. BMC Cardiovascular Disorders, 2021, 21(1): 310. |
32. | Ou YH, Tan A, Lee CH. Management ofhypertension in obstructive sleep apnea. Am J Prev Cardiol, 2023, 13: 100475. |
33. | 罗斌玉, 徐仕晗, 李逸雯, 等. 阻塞性睡眠呼吸暂停与心血管疾病的因果关系: 一项两样本孟德尔随机化研究. 中国循证医学杂志, 2023, 23(10): 1137-1142. |
34. | Parisi V, Paolillo S, Rengo G, et al. Sleep-disordered breathing and epicardial adipose tissue in patients with heart failure. Nutrition, metabolism, and cardiovascular diseases. NMCD, 2017, 28(2): 126-132. |
35. | Kostopoulos K, Alhanatis E, Pampoukas K, et al. CPAP therapy induces favorable short-term changes in epicardial fat thickness and vascular and metabolic markers in apparently healthy subjects with obstructive sleep apnea-hypopnea syndrome. Sleep Breath, 2016, 20(2): 483-493. |
36. | Parisi V, Rengo G, Perrone-Filardi P, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circulation research, 2016, 118(8): 1244-1253. |
37. | Geovanini G. R, Lorenzi-Filho G. Cardiac rhythm disorders in obstructive sleep apnea. J Thorac Dis, 2018, 10(34): 4221-4230. |
38. | Lyons OD. Obstructive sleep apnea in the patient with atrial fibrillation: current knowledge and remaining uncertainties. Curr Opin Pulm Med, 2023, 29(6): 550-556. |
39. | Ma Z, Zhang K, Wang Y, et al. Doxycycline improves fibrosis-induced abnormalities in atrial conduction and vulnerability to atrial fibrillation in chronic intermittent hypoxia rats. Med Sci Monit, 2020, 26: e918883. |
40. | Camm AJ, Naccarelli GV, Mittal S, et al. The increasing role of rhythm control in patients with atrial fibrillation: JACC state of the art review. J Am Coll Cardiol, 2022, 79(19): 1932-1948. |
41. | Yang X, Zhang L, Liu H, et al. Cardiac sympathetic denervation suppresses atrial fibrillation and blood pressure in a chronic intermittent hypoxia rat model of obstructive sleep apnea. J Am Heart Assoc, 2019, 8(4): e010254. |
42. | Wang J, Liu Y, Ma C, et al. Ameliorative impact of liraglutide on chronic intermittent hypoxia-induced atrial remodeling. J Immunol Res, 2022, 2022: 8181474. 10.1155/2022/8181474. |
43. | Bober SL, Ciriello J, Jones DL. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol, 2018, 314(6): 1160-1168. |
44. | Gemel J, Su Z, Gileles-Hillel A, et al. Intermittent hypoxia causes NOX2-dependent remodeling of atrial connexins. BMC Cell Biology, 2017, 18(1): 7. |
45. | 欧莉君, 李欣源, 郭莹宜. 肺动脉高压合并阻塞性睡眠呼吸暂停的研究进展. 心血管病学进展, 2024, 45(1): 20-23. |
46. | 何权瀛. 睡眠呼吸暂停过程中产生的胸膜腔内负压大幅度波动对人体的危害. 医学研究杂志, 2021, 50(10): 9-12. |
47. | Bkaily G, Abou Abdallah N, Simon Y, et al. Vascular smooth muscle remodeling in health and disease. Can J Physiol Pharm, 2021, 99(2): 171-178. |
48. | Frismantiene A, Philippova M, Erne P, et al. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal, 2018, 52: 48-64. |
49. | Aravani D, Foote K, Figg N, et al. Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis, 2020, 25,(9): 648-662. |
50. | Coll-Bonfill N, Cruz-Thea B, Pisano MV, et al. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch, 2016, 468(6): 1071-1087. |
51. | Ryan J, Archer S. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res, 2014, 115: 176-188. |
52. | Maripov A, Mamazhakypov A, Sartmyrzaeva M, et al. Right ventricular remodeling and dysfunction in obstructive sleep apnea: a systematic review of the literature and meta-analysis. Can. Respir J, 2017, 1587865. |
53. | Viswanathan G, Mamazhakypov A, Schermuly R T, et al. The role of G protein-coupled receptors in the right ventricle in pulmonary hypertension. Front Cardiovasc Med, 2018, 5: 179. |
54. | Lu D, Wang K, Jiang W, et al. Effect of renal denervation on cardiac remodelling and function in rats with chronic intermittent hypoxia. Clin Exp Pharmacol Physiol, 2023, 50(9): 719-727. |
- 1. 阻塞性睡眠呼吸暂停合并代谢综合征诊疗专家共识组. 阻塞性睡眠呼吸暂停合并代谢综合征诊疗专家共识(2022). 中华耳鼻咽喉头颈外科杂志, 2023, 58(2): 99-110.
- 2. Arnaud C, Billoir E, Junior AF, et al. Chronic intermittent hypoxia induced cardiovascular and renal dysfunction: from adaptation to maladaptation. Physiol, 2023, 601(24): 5553-5577.
- 3. Tadic M, Cuspidi C. Obstructive sleep apnea and right ventricular remodeling: do we have all the answers? Clin Med, 2023, 12(6): 2421.
- 4. Li Q, Xu Y, Li X, et al. Inhibition of Rho-kinase ameliorates myocardial remodeling and fibrosis in pressure overload and myocardial infarction: role of TGF-beta1-TAK1. Toxicol Lett, 2012, 211(2): 91-97. DOI: org/10.1016/j.toxlet.2012.03.006.
- 5. Anilkumar N, Sirker A, Shah AM. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci (Landmark Ed), 2009, 14(8): 3168-3187.
- 6. González A, Richards AM, Boer RA, et al. Cardiac remodelling-Part 1: from cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail, 2022, 24(6): 927-943.
- 7. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation, 2013, 128(4): 388-400.
- 8. Rademakers FE. Magnetic resonance imaging in cardiology. Lancet, 2003, 361(9355): 359-360.
- 9. Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460.
- 10. Bizanti A, Zhang Y, Toledo Z, et al. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. Physiol, 2024, 602(1): 49-71.
- 11. Kumar P, Prabhakar NR. Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol, 2012, 2(1): 141-219.
- 12. Prabhakar NR, Peng YJ, Nanduri J. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. Physiol, 2023, 601(24): 5481-5494.
- 13. Peng YJ, Overholt JL, Kline D, et al. Induction of sensory longterm facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad SciUSA, 2003, 100(17): 10073-10078.
- 14. Peng YJ, Yuan G, Ramakrishnan D, et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. Physiol, 2006, 577(2): 705-716.
- 15. Silva AQ, Schreihofer AM. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J Physiol, 2011, 589(6): 1463-1476.
- 16. Iturriaga R. Carotid Body Ablation: a new target to address central autonomic dysfunction. Curr Hypertens, 2018, 20(6): 53.
- 17. Arias-Mayenco I, Gonzalez-Rodriguez P, Torres-Torrelo, et al. Acute O(2) sensing: Role of coenzyme QH(2)/Q ratio and mitochondrial ROS compartmentalization. Cell Metabolism, 2018, 28(1): 145-158.
- 18. Scala O, Paolillo S, Formisano R, et al. Sleep-disordered breathing, impaired cardiac adrenergic innervation and prognosis in heart failure. British Cardiac Society, 2016, 102(22): 1813-1819.
- 19. 周祖东, 朱承莹, 高振云, 等. 老年阻塞性睡眠呼吸暂停低通气综合征患者迷走神经张力与病情严重程度的相关性分析. 实用心脑肺血管病杂志, 2021, 29(8): 60-65.
- 20. Bradley TD, Floras JS. Sleepapnea and heart failure: part II: central sleep apnea. Circulation, 2003, 107(13): 1822-1826.
- 21. Wang X, Li Z, Du Y, et al. lncRNA Mirt1: a critical regulatory factor in chronic intermittent hypoxia exaggerated Post-MI cardiac remodeling. Front Genet, 2022, 13: 818823.
- 22. 白巧会, 蒋绒, 李永霞. 不同严重程度阻塞性睡眠呼吸暂停与代谢综合征的相关性研究. 中国老年保健医学, 2023, 21(2): 41-45.
- 23. Heffernan A, Duplancic D, Kumric M, et al. Metabolic crossroads: unveiling the complex interactions between obstructive sleep apnoea and metabolic syndrome. Int J Mol Sci, 2024, 25(6): 3243.
- 24. Avelar E, Cloward TV, Walker JM, et al. Left ventricular hypertrophy in severe obesity: interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension, 2007, 49(1): 34-39.
- 25. Gaucher J, Montellier E, Vial G, et al. Long-term intermittent hypoxia in mice induces inflammatory pathways implicated in sleep apnea and steatohepatitis in humans. iScience, 2024, 9,27(2): 108837.
- 26. 赵哲, 刘霖, 赵力博, 等. 老年男性阻塞性睡眠呼吸暂停患者合并代谢综合征相关不良心血管事件的预后. 中国临床保健杂志, 2023, 26(2): 184-188.
- 27. Arnaud C, Bochaton T, Pépin JL, et al. Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Arch Cardiovasc Dis, 2020, 113(5): 350-358.
- 28. Zeng X, Guo R, Dong M, et al. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression. J Transl Med, 2018, 16(1): 106.
- 29. Lee M, Wang Y, Mak J, et al. Intermittent hypoxia induces NF-κB-dependent endothelial activation via adipocyte-derived mediators. Am J Physiol Cell Physiol, 2016, 310(6): 446-455.
- 30. Ryan, S. Mechanisms of cardiovascular disease in obstructive sleep apnoea. J Thorac Dis, 2018, 10(34): 4201-4211.
- 31. Khamsai S, Chootrakool A, Limpawattana P, et al. Hypertensive crisis in patients with obstructive sleep apnea-induced hypertension. BMC Cardiovascular Disorders, 2021, 21(1): 310.
- 32. Ou YH, Tan A, Lee CH. Management ofhypertension in obstructive sleep apnea. Am J Prev Cardiol, 2023, 13: 100475.
- 33. 罗斌玉, 徐仕晗, 李逸雯, 等. 阻塞性睡眠呼吸暂停与心血管疾病的因果关系: 一项两样本孟德尔随机化研究. 中国循证医学杂志, 2023, 23(10): 1137-1142.
- 34. Parisi V, Paolillo S, Rengo G, et al. Sleep-disordered breathing and epicardial adipose tissue in patients with heart failure. Nutrition, metabolism, and cardiovascular diseases. NMCD, 2017, 28(2): 126-132.
- 35. Kostopoulos K, Alhanatis E, Pampoukas K, et al. CPAP therapy induces favorable short-term changes in epicardial fat thickness and vascular and metabolic markers in apparently healthy subjects with obstructive sleep apnea-hypopnea syndrome. Sleep Breath, 2016, 20(2): 483-493.
- 36. Parisi V, Rengo G, Perrone-Filardi P, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circulation research, 2016, 118(8): 1244-1253.
- 37. Geovanini G. R, Lorenzi-Filho G. Cardiac rhythm disorders in obstructive sleep apnea. J Thorac Dis, 2018, 10(34): 4221-4230.
- 38. Lyons OD. Obstructive sleep apnea in the patient with atrial fibrillation: current knowledge and remaining uncertainties. Curr Opin Pulm Med, 2023, 29(6): 550-556.
- 39. Ma Z, Zhang K, Wang Y, et al. Doxycycline improves fibrosis-induced abnormalities in atrial conduction and vulnerability to atrial fibrillation in chronic intermittent hypoxia rats. Med Sci Monit, 2020, 26: e918883.
- 40. Camm AJ, Naccarelli GV, Mittal S, et al. The increasing role of rhythm control in patients with atrial fibrillation: JACC state of the art review. J Am Coll Cardiol, 2022, 79(19): 1932-1948.
- 41. Yang X, Zhang L, Liu H, et al. Cardiac sympathetic denervation suppresses atrial fibrillation and blood pressure in a chronic intermittent hypoxia rat model of obstructive sleep apnea. J Am Heart Assoc, 2019, 8(4): e010254.
- 42. Wang J, Liu Y, Ma C, et al. Ameliorative impact of liraglutide on chronic intermittent hypoxia-induced atrial remodeling. J Immunol Res, 2022, 2022: 8181474. 10.1155/2022/8181474.
- 43. Bober SL, Ciriello J, Jones DL. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol, 2018, 314(6): 1160-1168.
- 44. Gemel J, Su Z, Gileles-Hillel A, et al. Intermittent hypoxia causes NOX2-dependent remodeling of atrial connexins. BMC Cell Biology, 2017, 18(1): 7.
- 45. 欧莉君, 李欣源, 郭莹宜. 肺动脉高压合并阻塞性睡眠呼吸暂停的研究进展. 心血管病学进展, 2024, 45(1): 20-23.
- 46. 何权瀛. 睡眠呼吸暂停过程中产生的胸膜腔内负压大幅度波动对人体的危害. 医学研究杂志, 2021, 50(10): 9-12.
- 47. Bkaily G, Abou Abdallah N, Simon Y, et al. Vascular smooth muscle remodeling in health and disease. Can J Physiol Pharm, 2021, 99(2): 171-178.
- 48. Frismantiene A, Philippova M, Erne P, et al. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal, 2018, 52: 48-64.
- 49. Aravani D, Foote K, Figg N, et al. Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis, 2020, 25,(9): 648-662.
- 50. Coll-Bonfill N, Cruz-Thea B, Pisano MV, et al. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch, 2016, 468(6): 1071-1087.
- 51. Ryan J, Archer S. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res, 2014, 115: 176-188.
- 52. Maripov A, Mamazhakypov A, Sartmyrzaeva M, et al. Right ventricular remodeling and dysfunction in obstructive sleep apnea: a systematic review of the literature and meta-analysis. Can. Respir J, 2017, 1587865.
- 53. Viswanathan G, Mamazhakypov A, Schermuly R T, et al. The role of G protein-coupled receptors in the right ventricle in pulmonary hypertension. Front Cardiovasc Med, 2018, 5: 179.
- 54. Lu D, Wang K, Jiang W, et al. Effect of renal denervation on cardiac remodelling and function in rats with chronic intermittent hypoxia. Clin Exp Pharmacol Physiol, 2023, 50(9): 719-727.
-
Previous Article
CXCL9、CXCL10在肺动脉高压中的研究进展 -
Next Article
呼出气挥发性有机化合物检测在慢性阻塞性肺疾病诊疗中的研究进展