1. |
Guida G, Riccio AM. Immune induction of airway remodeling. Semin Immunol, 2019, 46: 101346.
|
2. |
Barbato A, Turato G, Baraldo S, et al. Epithelial damage and angiogenesis in the airways of children with asthma. Am Respir Crit Care Med 2006, 174(9): 975-981.
|
3. |
Holgate ST, Yang Y, Haitchi HM, et al. The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proc Am Thorac Soc, 2006, 3(5): 440-443.
|
4. |
Banno A, Reddy AT, Lakshmi SP, et al. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci(Lond), 2020, 134(9): 1063-1079.
|
5. |
Dreymueller D, Pruessmeyer J, Groth E, et al. The Role of ADAM-mediated Shedding in Vascular Biology. Eur J Cell Biol, 2012, 91(6-7): 472-485.
|
6. |
Camoretti-Mercado B, Lockey RF. Airway smooth muscle pathophysiology in asthma. J Allergy Clin Immunol, 2021, 147(6): 1983-1995.
|
7. |
Dreymueller D, Uhlig S, Ludwig A. ADAM-family met alloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol, 2015, 308(4): L325-343.
|
8. |
闫芳. ADAM33在哮喘气道血管重塑中的作用和分子机制. 新疆医科大学, 2023.
|
9. |
Breikaa RM, Denman K, Ueyama Y, et al. Loss of Jagged1 in mature endothelial cells causes vascular dysfunction with alterations in smooth muscle phenotypes. Vascul Pharmacol. 2022, 145: 107087.
|
10. |
Duan Y , Long J , Lin F , et al. Soluble ADAM33 determines mechanical behaviors of airway smooth muscle cells, 医用生物力学, 2013, 28(S1): 107-108.
|
11. |
D Amato M, Cecchi L, Annesi-Maesano I,et al. News on Climate Change, Air Pollution, and Allergic Triggers of Asthma. J Investig Allergol Clin Immunol, 2018, 28(2): 91-97.
|
12. |
Pinto LA, Stein RT, Kabesch M. Impact of genetics in childhood asthma. J Pediatr (Rio J), 2008, 84(4 Suppl): S68-S75.
|
13. |
Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res, 2017, 367(3): 551-569.
|
14. |
Deng R, Zhao F, Zhong X. T1 polymorphism in a disintegrin and metalloproteinase 33 (ADAM33) gene may contribute to the risk of childhood asthma in Asians. Inflamm Res, 2017, 66(5): 413-424.
|
15. |
Janulaityte I, Januskevicius A, Rimkunas A, et al. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. International Journal of Molecular Sciences, Int J Mol Sci, 2022, 23(8): 4086.
|
16. |
Duan Y, Long J, Chen J, et al. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat. Exp Cell Res, 2016, 15;349(1): 109-118.
|
17. |
Yan F, Hao Y, Gong X, et al. Silencing a disintegrin and metalloproteinase-33 attenuates the proliferation of vascular smooth muscle cells via PI3K/AKT pathway: Implications in the pathogenesis of airway vascular remodeling. Mol Med Rep, 2021, 24(1): 502.
|
18. |
Davies ER, Kelly JF, Howarth PH, et al. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight, 2016, 1(11): e87632.
|
19. |
Puxeddu I, Pang YY, Harvey A, et al. The soluble form of a disintegrin and metalloprotease 33 promotes angiogenesis: implications for airway remodeling in asthma. J Allergy Clin Immunol, 2008, 121(6): 1400-6, 1406. e1-4.
|
20. |
Tripathi P, Awasthi S, Husain N, et al. Increased expression of ADAM33 protein in asthmatic patients as compared to non-asthmatic controls. Indian J Med Res, 2013, 137: 507-514.
|
21. |
Tripathi P, Awasthi S, Gao P. ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma. Mediators Inflamm, 2014, 2014: 572025.
|
22. |
Pan L, Liu C, Kong Y, Piao Z, Cheng B. Phentolamine inhibits angiogenesis in vitro: Suppression of proliferation migration and differentiation of human endothelial cells. Clin Hemorheol Microcirc, 2017, 65(1): 31-41.
|
23. |
Karaman S, Leppänen VM, Alitalo K, et al. Vascular endothelial growth factor signaling in development and disease. Development, 2018, 145(14): dev151019.
|
24. |
Tsai JL, Lee YM, Pan CY, Lee AY. The Novel VEGF121-VEGF165 Fusion Attenuates Angiogenesis and Drug Resistance via Targeting VEGFR2-HIF-1α-VEGF165/Lon Signaling Through PI3K-AKT-mTOR Pathway. Curr Cancer Drug Targets. 2016, 16(3): 275-286.
|
25. |
王师英, 孙博云, 林江等. VEGFR2在血管新生与重塑中的调控作用. 中国老年学杂志, 2017, 37(19): 4924-4927.
|
26. |
Bakakos P, Patentalakis G, Papi A. Vascular Biomarkers in Asthma and COPD. Curr Top Med Chem. 2016;16(14): 1599-1609.
|
27. |
Yao S, Su C, Wu SH, et al. Aliskiren Improved the Endothelial Repair Capacity of Endothelial Progenitor Cells from Patients with Hypertension via the Tie2/PI3k/Akt/eNOS Signalling Pathway. Cardiol Res Pract. 2020, 2020: 6534512.
|
28. |
Piotr Kobialka1 and Mariona Graupera. Revisiting PI3-kinase signalling in angiogenesis. Vasc Biol. 2019, 1(1): H125-H134.
|
29. |
雷佳慧, 祝贺, 肖亚丽, 等. AMPK在支气管哮喘中的作用及其研究进展. 中国呼吸与危重监护杂志, 2022, 21(12): 893-898.
|