1. |
Richeldi L, Azuma A, Cottin V, et al. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med, 2022, 386(23): 2178-2187. DOI: 10.1056/NEJMoa 2201737.
|
2. |
Esposito DB, Lanes S, Donneyong M, et al. Idiopathic pulmonary fibrosis in United States automated claims. Incidence, prevalence, and algorithm validation. Am J Respir Crit Care Med, 2015, 192(10): 1200-1207.
|
3. |
Harari S, Madotto F, Caminati A, et al. Epidemiology of idiopathic pulmonary fibrosis in Northern Italy. PLoS One, 2016, 11(2): e0147072.
|
4. |
雷凯春, 岳红梅, 周婷婷. 特发性肺纤维化治疗新进展. 中国呼吸与危重监护杂志, 2019, 18(2): 199-203.
|
5. |
Selvarajah B, Platé M, Chambers RC. Pulmonary fibrosis: emerging diagnostic and therapeutic strategies. Mol Aspects Med, 2023, 94: 101227.
|
6. |
杨莹, 徐凯峰, 魏丽娟. 吡非尼酮和尼达尼布在新型冠状病毒感染后肺纤维化中的应用进展. 中国呼吸与危重监护杂志, 2024, 23(8): 593-598.
|
7. |
Raghu G, Remy-Jardin M, Richeldi L, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med, 2022, 205(9): e18-e47.
|
8. |
Drakopanagiotakis F, Wujak L, Wygrecka M, et al. Biomarkers in idiopathic pulmonary fibrosis. Matrix Biol, 2018, 68: 404-421.
|
9. |
Stainer A, Faverio P, Busnelli S, et al. Molecular biomarkers in idiopathic pulmonary fibrosis: state of the art and future directions. Int J Mol Sci, 2021, 22(12): 6255.
|
10. |
范宇斌, 何荣伶, 邹丽君, 等. 生物标志物在特发性肺纤维化中的临床价值. 南方医科大学学报, 2020, 40(7): 1062-1065.
|
11. |
O’dwyer DN, Moore BB. The role of periostin in lung fibrosis and airway remodeling. Cell Mol Life Sci, 2017, 74: 4305-4314.
|
12. |
Ono J, Takai M, Kamei A, et al. Pathological roles and clinical usefulness of periostin in type 2 inflammation and pulmonary fibrosis. Biomolecules, 2021, 11(8): 1084.
|
13. |
吕长俊, 李洪波, 王晓芝, 等. 特发性肺纤维化与非特异性间质性肺炎的非创伤性鉴别诊断方程. 中华内科杂志, 2010, 49(5): 376-379.
|
14. |
Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082): 1941-1952.
|
15. |
Singh S, Natalini JG, Segal LN. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol, 2022, 15(5): 837-845.
|
16. |
吴亚娜, 刘东玲, 宋忠阳, 等. 特发性肺纤维化中上皮-间质转化的研究现状. 中国临床药理学杂志, 2023, 39(23): 3499-3503.
|
17. |
Salton F, Volpe MC, Confalonieri M. Epithelial–mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina, 2019, 55(4): 83.
|
18. |
邓艳, 赵红玉, 朱丽萍, 等. 硫酸羟氯喹通过PI3K/AKt/mTOR信号通路对百草枯致小鼠肺纤维化影响. 中国呼吸与危重监护杂志, 2024, 23(3): 192-199.
|
19. |
Gao Y, Du T, Yang L, et al. Research progress of KL-6 in respiratory system diseases. Crit Rev Clin Lab Sci, 2024: 1-17.
|
20. |
D’alessandro M, Bergantini L, Cameli P, et al. Krebs von den Lungen-6 as a biomarker for disease severity assessment in interstitial lung disease: a comprehensive review. Biomark Med, 2020, 14(8): 665-674.
|
21. |
Okamoto T, Fujii M, Furusawa H, et al. The usefulness of KL-6 and SP-D for the diagnosis and management of chronic hypersensitivity pneumonitis. Respir Med, 2015, 109(12): 1576-1581.
|
22. |
Xu L, Bian W, Gu X, et al. Differing expression of cytokines and tumor markers in combined pulmonary fibrosis and emphysema compared to emphysema and pulmonary fibrosis. COPD, 2017, 14(2): 245-250.
|
23. |
廖明星, 潘瑞琪, 艾承锦, 等. 肺纤维化血清 KL-6, TGF-β, CXCL13 水平与病变程度的关系及其联合预测价值. 医学研究生学报, 2021, 34(1): 62-67.
|
24. |
Sánchez-Díez S, Munoz X, Ojanguren I, et al. YKL-40 and KL-6 levels in serum and sputum of patients diagnosed with hypersensitivity pneumonitis. J Allergy Clin Immunol Pract, 2022, 10(9): 2414-2423.
|
25. |
Mulugeta S, Nureki SI, Beers MF. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol, 2015, 309(6): L507-L525.
|
26. |
Katzen J, Beers MF. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest, 2020, 130(10): 5088-5099.
|
27. |
鲁未, 赵卉, 魏红. 血清KL-6、SP-A、SP-D及MMP-7对特发性肺纤维化的诊断意义及与肺功能的关系. 安徽医科大学学报, 2016, 51(6): 868-872.
|
28. |
苏文瑶, 陈铿铿, 黄永顺, 等. 表面活性蛋白A、D在肺纤维化中的作用研究进展. 中国职业医学, 2021, 48(4): 451-456.
|
29. |
Confalonieri P, Volpe MC, Jacob J, et al. Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells, 2022, 11(13): 2095.
|
30. |
Hamai K, Iwamoto H, Ishikawa N, et al. Comparative study of circulating MMP -7, CCL18, KL-6, SP-A, and SP-D as disease markers of idiopathic pulmonary fibrosis. Dis Markers, 2016, 2016: 4759040.
|
31. |
Guagliardo R, Perez-Gil J, De SS, et al. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release, 2018, 291: 116-126.
|
32. |
Dare A, King SD, Chen SY. Surfactant protein A promotes western diet-induced hepatic steatosis and fibrosis in mice. Sci Rep, 2024, 14(1): 7464.
|
33. |
李群, 关为群, 张杨安, 等. 骨膜蛋白和 p53 在口腔白斑及鳞状细胞癌组织中的表达及意义. 国际口腔医学杂志, 2019, 46(1): 5-11.
|
34. |
Yoshihara T, Nanri Y, Nunomura S, et al. Periostin plays a critical role in the cell cycle in lung fibroblasts. Respir Res, 2020, 21: 1-12.
|
35. |
刘胜菲, 李龙, 陈凤, 等. 骨膜蛋白在特发性肺纤维化中的研究进展. 中国呼吸与危重监护杂志, 2023, 22(6): 448-451.
|
36. |
Carpagnano GE, Soccio P, Scioscia G, et al. The potential role of airways periostin in the clinical Practice of patients affected by idiopathic pulmonary fibrosis. Rejuvenation Res, 2021, 24(4): 302-306.
|