Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Im Y, Kang D, Ko R E, et al. Time-to-antibiotics and clinical outcomes in patients with sepsis and septic shock: a prospective nationwide multicenter cohort study. Crit Care, 2022, 26(1): 19. |
2. | Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219): 200-211. |
3. | La Via L, Sangiorgio G, Stefani S, et al. The Global Burden of Sepsis and Septic Shock. Epidemiologia (Basel), 2024, 5(3): 456-478. |
4. | Chen X, Liu Y, Gao Y, et al. The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol, 2021, 96: 107791. |
5. | Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol, 2005, 5(12): 953-964. |
6. | Kumar V. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. Int Immunopharmacol, 2018, 58: 173-185. |
7. | Wynn T A, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis, 2010, 30(3): 245-257. |
8. | Roquilly A, Jacqueline C, Davieau M, et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat Immunol, 2020, 21(6): 636-648. |
9. | Liu D, Huang S Y, Sun J H, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res, 2022, 9(1): 56. |
10. | De Santa F, Totaro M G, Prosperini E, et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell, 2007, 130(6): 1083-1094. |
11. | Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity, 2018, 49(4): 740-753,e7. |
12. | Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev, 2016, 274(1): 330-353. |
13. | Luan YY, Dong N, Xie M, et al. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interferon Cytokine Res, 2014, 34(1): 2-15. |
14. | Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity, 2014, 41(1): 21-35. |
15. | Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol, 2017, 15(1): 53. |
16. | Feng A, Ao X, Zhou N, et al. A novel risk-prediction scoring system for sepsis among patients with acute pancreatitis: a retrospective analysis of a large clinical database. Int J Clin Pract, 2022, 2022: 5435656. |
17. | Sun JK, Nie S, Chen YM, et al. Effects of permissive hypocaloric vs standard enteral feeding on gastrointestinal function and outcomes in sepsis. World J Gastroenterol, 2021, 27(29): 4900-4912. |
18. | Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol, 2015, 27(6): 397-409. |
19. | Hamidzadeh K, Christensen S M, Dalby E, et al. Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol, 2017, 79: 567-592. |
20. | Gao YL, Yao Y, Zhang X, et al. Regulatory T cells: angels or demons in the pathophysiology of sepsis?. Front Immunol, 2022, 13: 829210. |
21. | Wang TS, Deng JC. Molecular and cellular aspects of sepsis-induced immunosuppression. J Mol Med (Berl), 2008, 86(5): 495-506. |
22. | Winkler MS, Rissiek A, Priefler M, et al. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFα response: A diagnostic tool for immunosuppression?. PLoS One, 2017, 12(8): e0182427. |
23. | Shin DM, Yang CS, Yuk JM, et al. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell Microbiol, 2008, 10(8): 1608-1621. |
24. | Hiruma T, Tsuyuzaki H, Uchida K, et al. IFN-β improves sepsis-related alveolar macrophage dysfunction and postseptic acute respiratory distress syndrome-related mortality. Am J Respir Cell Mol Biol, 2018, 59(1): 45-55. |
25. | Körner A, Bernard A, Fitzgerald J C, et al. Sema7A is crucial for resolution of severe inflammation. Proc Natl Acad Sci U S A, 2021, 118(9): e2017527118. |
26. | Choi S, Kim T. Compound K - an immunomodulator of macrophages in inflammation. Life Sci, 2023, 323: 121700. |
27. | Meyers AK, Wang Z, Han W, et al. Pyruvate dehydrogenase kinase supports macrophage NLRP3 inflammasome activation during acute inflammation. Cell Rep, 2023, 42(1): 111941. |
28. | Bauer M, Wetzker R. The cellular basis of organ failure in sepsis-signaling during damage and repair processes. Med Klin Intensivmed Notfmed, 2020, 115(Suppl 1): 4-9. |
29. | Ni P, Liu YQ, Man JY, et al. C16, a novel sinomenine derivatives, promoted macrophage reprogramming toward M2-like phenotype and protected mice from endotoxemia. Int J Immunopathol Pharmacol, 2021, 35: 20587384211026786. |
30. | Mills EL, Kelly B, O'neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol, 2017, 18(5): 488-498. |
31. | Monlun M, Hyernard C, Blanco P, et al. Mitochondria as molecular platforms integrating multiple innate immune signalings. J Mol Biol, 2017, 429(1): 1-13. |
32. | Mikkelsen ME, Miltiades AN, Gaieski DF, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med, 2009, 37(5): 1670-1677. |
33. | Wang Z, Kong L, Tan S, et al. Zhx2 Accelerates sepsis by promoting macrophage glycolysis via Pfkfb3. J Immunol, 2020, 204(8): 2232-2241. |
34. | Lu XJ, Chen J, Yu CH, et al. LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J Exp Med, 2013, 210(1): 5-13. |
35. | Xia H, Chen L, Liu H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep, 2017, 7(1): 99. |
36. | Bohaud C, Johansen M D, Jorgensen C, et al. The role of macrophages during mammalian tissue remodeling and regeneration under infectious and non-infectious conditions. Front Immunol, 2021, 12: 707856. |
37. | Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol, 2021, 18(3): 579-587. |
38. | Jiang W, Le J, Wang P Y, et al. Extracellular acidity reprograms macrophage metabolism and innate responsiveness. J Immunol, 2021, 206(12): 3021-3031. |
39. | 王历, 张平安. 巨噬细胞糖代谢重编程在脓毒症中的研究进展. 微循环学杂志, 2023, 33(1): 108-112. |
40. | Luo R, Li X, Wang D. Reprogramming macrophage metabolism and its effect on NLRP3 inflammasome activation in sepsis. Front Mol Biosci, 2022, 9: 917818. |
41. | Liu W, Liu T, Zheng Y, et al. Metabolic reprogramming and its regulatory mechanism in sepsis-mediated inflammation. J Inflamm Res, 2023, 16: 1195-1207. |
42. | Stincone A, Prigione A, Cramer T, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc, 2015, 90(3): 927-963. |
43. | Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest, 1997, 112(1): 235-243. |
44. | Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol, 2013, 13(12): 862-874. |
45. | Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol, 2018, 14(2): 121-137. |
46. | Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science, 2019, 366(6463). |
47. | Song F, Hou J, Chen Z, et al. Sphingosine-1-phosphate receptor 2 signaling promotes caspase-11-dependent macrophage pyroptosis and worsens Escherichia coli sepsis outcome. Anesthesiology, 2018, 129(2): 311-320. |
48. | Hou J, Chen Q, Zhang K, et al. Sphingosine 1-phosphate receptor 2 signaling suppresses macrophage phagocytosis and impairs host defense against sepsis. Anesthesiology, 2015, 123(2): 409-422. |
49. | Fang C, Ren P, Bian G, et al. Enhancing Spns2/S1P in macrophages alleviates hyperinflammation and prevents immunosuppression in sepsis. EMBO Rep, 2023, 24(8): e56635. |
50. | Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis, 2013, 13(3): 260-268. |
51. | Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol, 2019, 105(2): 329-338. |
52. | Riedemann NC, Guo RF, Ward PA. Novel strategies for the treatment of sepsis. Nat Med, 2003, 9(5): 517-524. |
53. | Santos SS, Carmo AM, Brunialti MK, et al. Modulation of monocytes in septic patients: preserved phagocytic activity, increased ROS and NO generation, and decreased production of inflammatory cytokines. Intensive Care Med Exp, 2016, 4(1): 5. |
54. | Shalova IN, Lim JY, Chittezhath M, et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity, 2015, 42(3): 484-98. |
55. | Lachmandas E, Beigier-Bompadre M, Cheng SC, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol, 2016, 46(11): 2574-2586. |
56. | Escoll P, Buchrieser C. Metabolic reprogramming: an innate cellular defence mechanism against intracellular bacteria?. Curr Opin Immunol, 2019, 60: 117-123. |
57. | Li H, Luo YF, Wang YS, et al. Using ROS as a second messenger, NADPH oxidase 2 mediates macrophage senescence via interaction with NF-κB during Pseudomonas aeruginosa infection. Oxid Med Cell Longev, 2018, 2018: 9741838. |
58. | Li H, Luo YF, Wang YS, et al. Pseudomonas aeruginosa induces cellular senescence in lung tissue at the early stage of two-hit septic mice. Pathog Dis, 2018, 76(9). |
59. | Zhao Q, Luo Y F, Tian M, et al. Activating transcription factor 3 involved in Pseudomonas aeruginosa PAO1-induced macrophage senescence. Mol Immunol, 2021, 133: 122-127. |
60. | Wolk K, Döcke WD, Von Baehr V, et al. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood, 2000, 96(1): 218-223. |
61. | Hou J, Chen Q, Wu X, et al. S1PR3 Signaling drives bacterial killing and is required for survival in bacterial sepsis. Am J Respir Crit Care Med, 2017, 196(12): 1559-1570. |
62. | Aachoui Y, Leaf I A, Hagar J A, et al. Caspase-11 protects against bacteria that escape the vacuole. Science, 2013, 339(6122): 975-978. |
63. | Broz P, Ruby T, Belhocine K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature, 2012, 490(7419): 288-291. |
64. | Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science, 2013, 341(6151): 1250-1253. |
65. | Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature, 2011, 479(7371): 117-121. |
66. | Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science, 2013, 341(6151): 1246-1249. |
67. | Rathinam VA, Vanaja SK, Waggoner L, et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell, 2012, 150(3): 606-619. |
68. | Wu B, Xu MM, Fan C, et al. STING inhibitor ameliorates LPS-induced ALI by preventing vascular endothelial cells-mediated immune cells chemotaxis and adhesion. Acta Pharmacol Sin, 2022, 43(8): 2055-2066. |
69. | Zhou S, Yang X, Mo K, et al. Pyroptosis and polarization of macrophages in septic acute lung injury induced by lipopolysaccharide in mice. Immun Inflamm Dis, 2024, 12(3): e1197. |
70. | Kang M, Kim HW, Yu AR, et al. Comparison of macrophage immune responses and metabolic reprogramming in smooth and rough variant infections of mycobacterium mucogenicum. Int J Mol Sci, 2022, 23(5): 2488. |
71. | Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care, 2014, 18(5): 503. |
72. | Suetrong B, Walley KR. Lactic acidosis in sepsis: it's not all anaerobic: implications for diagnosis and management. Chest, 2016, 149(1): 252-261. |
73. | 海天明, 曹猛, 姜晓旭, 等. 巨噬细胞重编程在炎症性疾病调控中的双向作用. 癌变·畸变·突变, 2024, 36(3): 248-252. |
74. | Gritte RB, Souza-Siqueira T, Borges Da Silva E, et al. Evidence for monocyte reprogramming in a long-term postsepsis study. Crit Care Explor, 2022, 4(8): e0734. |
75. | O'neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med, 2016, 213(1): 15-23. |
76. | Russell DG, Huang L, Vanderven BC. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol, 2019, 19(5): 291-304. |
77. | Barclay AN, Van Den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol, 2014, 32: 25-50. |
78. | Polara R, Ganesan R, Pitson SM, et al. Cell autonomous functions of CD47 in regulating cellular plasticity and metabolic plasticity. Cell Death Differ, 2024, 31(10): 1255-1266. |
79. | Cui Y, Chen J, Zhang Z, et al. The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med, 2023, 21(1): 892. |
80. | Yang S, Yang Y, Wang F, et al. TREM2 dictates antibacterial defense and viability of bone marrow-derived macrophages during bacterial infection. Am J Respir Cell Mol Biol, 2021, 65(2): 176-188. |
81. | Jaitin DA, Adlung L, Thaiss CA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell, 2019, 178(3): 686-698,e14. |
82. | Pérez-Diego M, Angelina A, Martín-Cruz L, et al. Cannabinoid WIN55, 212-2 reprograms monocytes and macrophages to inhibit LPS-induced inflammation. Front Immunol, 2023, 14: 1147520. |
83. | Møller K. Of cells and men: ex vivo and in vivo tolerance to lipopolysaccharide. Crit Care Med, 2011, 39(8): 1997-1998. |
84. | Xu H, Chen J, Si X, et al. PKR inhibition mediates endotoxin tolerance in macrophages through inactivation of PI3K/AKT signaling. Mol Med Rep, 2018, 17(6): 8548-8556. |
85. | 熊娟, 高明朗, 范国华. 白皮杉醇对脓毒症肺损伤小鼠代谢重编程的影响. 医学研究杂志, 2023, 52(1): 52-56. |
- 1. Im Y, Kang D, Ko R E, et al. Time-to-antibiotics and clinical outcomes in patients with sepsis and septic shock: a prospective nationwide multicenter cohort study. Crit Care, 2022, 26(1): 19.
- 2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219): 200-211.
- 3. La Via L, Sangiorgio G, Stefani S, et al. The Global Burden of Sepsis and Septic Shock. Epidemiologia (Basel), 2024, 5(3): 456-478.
- 4. Chen X, Liu Y, Gao Y, et al. The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol, 2021, 96: 107791.
- 5. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol, 2005, 5(12): 953-964.
- 6. Kumar V. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. Int Immunopharmacol, 2018, 58: 173-185.
- 7. Wynn T A, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis, 2010, 30(3): 245-257.
- 8. Roquilly A, Jacqueline C, Davieau M, et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat Immunol, 2020, 21(6): 636-648.
- 9. Liu D, Huang S Y, Sun J H, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res, 2022, 9(1): 56.
- 10. De Santa F, Totaro M G, Prosperini E, et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell, 2007, 130(6): 1083-1094.
- 11. Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity, 2018, 49(4): 740-753,e7.
- 12. Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev, 2016, 274(1): 330-353.
- 13. Luan YY, Dong N, Xie M, et al. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interferon Cytokine Res, 2014, 34(1): 2-15.
- 14. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity, 2014, 41(1): 21-35.
- 15. Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol, 2017, 15(1): 53.
- 16. Feng A, Ao X, Zhou N, et al. A novel risk-prediction scoring system for sepsis among patients with acute pancreatitis: a retrospective analysis of a large clinical database. Int J Clin Pract, 2022, 2022: 5435656.
- 17. Sun JK, Nie S, Chen YM, et al. Effects of permissive hypocaloric vs standard enteral feeding on gastrointestinal function and outcomes in sepsis. World J Gastroenterol, 2021, 27(29): 4900-4912.
- 18. Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol, 2015, 27(6): 397-409.
- 19. Hamidzadeh K, Christensen S M, Dalby E, et al. Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol, 2017, 79: 567-592.
- 20. Gao YL, Yao Y, Zhang X, et al. Regulatory T cells: angels or demons in the pathophysiology of sepsis?. Front Immunol, 2022, 13: 829210.
- 21. Wang TS, Deng JC. Molecular and cellular aspects of sepsis-induced immunosuppression. J Mol Med (Berl), 2008, 86(5): 495-506.
- 22. Winkler MS, Rissiek A, Priefler M, et al. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFα response: A diagnostic tool for immunosuppression?. PLoS One, 2017, 12(8): e0182427.
- 23. Shin DM, Yang CS, Yuk JM, et al. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell Microbiol, 2008, 10(8): 1608-1621.
- 24. Hiruma T, Tsuyuzaki H, Uchida K, et al. IFN-β improves sepsis-related alveolar macrophage dysfunction and postseptic acute respiratory distress syndrome-related mortality. Am J Respir Cell Mol Biol, 2018, 59(1): 45-55.
- 25. Körner A, Bernard A, Fitzgerald J C, et al. Sema7A is crucial for resolution of severe inflammation. Proc Natl Acad Sci U S A, 2021, 118(9): e2017527118.
- 26. Choi S, Kim T. Compound K - an immunomodulator of macrophages in inflammation. Life Sci, 2023, 323: 121700.
- 27. Meyers AK, Wang Z, Han W, et al. Pyruvate dehydrogenase kinase supports macrophage NLRP3 inflammasome activation during acute inflammation. Cell Rep, 2023, 42(1): 111941.
- 28. Bauer M, Wetzker R. The cellular basis of organ failure in sepsis-signaling during damage and repair processes. Med Klin Intensivmed Notfmed, 2020, 115(Suppl 1): 4-9.
- 29. Ni P, Liu YQ, Man JY, et al. C16, a novel sinomenine derivatives, promoted macrophage reprogramming toward M2-like phenotype and protected mice from endotoxemia. Int J Immunopathol Pharmacol, 2021, 35: 20587384211026786.
- 30. Mills EL, Kelly B, O'neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol, 2017, 18(5): 488-498.
- 31. Monlun M, Hyernard C, Blanco P, et al. Mitochondria as molecular platforms integrating multiple innate immune signalings. J Mol Biol, 2017, 429(1): 1-13.
- 32. Mikkelsen ME, Miltiades AN, Gaieski DF, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med, 2009, 37(5): 1670-1677.
- 33. Wang Z, Kong L, Tan S, et al. Zhx2 Accelerates sepsis by promoting macrophage glycolysis via Pfkfb3. J Immunol, 2020, 204(8): 2232-2241.
- 34. Lu XJ, Chen J, Yu CH, et al. LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J Exp Med, 2013, 210(1): 5-13.
- 35. Xia H, Chen L, Liu H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep, 2017, 7(1): 99.
- 36. Bohaud C, Johansen M D, Jorgensen C, et al. The role of macrophages during mammalian tissue remodeling and regeneration under infectious and non-infectious conditions. Front Immunol, 2021, 12: 707856.
- 37. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol, 2021, 18(3): 579-587.
- 38. Jiang W, Le J, Wang P Y, et al. Extracellular acidity reprograms macrophage metabolism and innate responsiveness. J Immunol, 2021, 206(12): 3021-3031.
- 39. 王历, 张平安. 巨噬细胞糖代谢重编程在脓毒症中的研究进展. 微循环学杂志, 2023, 33(1): 108-112.
- 40. Luo R, Li X, Wang D. Reprogramming macrophage metabolism and its effect on NLRP3 inflammasome activation in sepsis. Front Mol Biosci, 2022, 9: 917818.
- 41. Liu W, Liu T, Zheng Y, et al. Metabolic reprogramming and its regulatory mechanism in sepsis-mediated inflammation. J Inflamm Res, 2023, 16: 1195-1207.
- 42. Stincone A, Prigione A, Cramer T, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc, 2015, 90(3): 927-963.
- 43. Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest, 1997, 112(1): 235-243.
- 44. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol, 2013, 13(12): 862-874.
- 45. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol, 2018, 14(2): 121-137.
- 46. Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science, 2019, 366(6463).
- 47. Song F, Hou J, Chen Z, et al. Sphingosine-1-phosphate receptor 2 signaling promotes caspase-11-dependent macrophage pyroptosis and worsens Escherichia coli sepsis outcome. Anesthesiology, 2018, 129(2): 311-320.
- 48. Hou J, Chen Q, Zhang K, et al. Sphingosine 1-phosphate receptor 2 signaling suppresses macrophage phagocytosis and impairs host defense against sepsis. Anesthesiology, 2015, 123(2): 409-422.
- 49. Fang C, Ren P, Bian G, et al. Enhancing Spns2/S1P in macrophages alleviates hyperinflammation and prevents immunosuppression in sepsis. EMBO Rep, 2023, 24(8): e56635.
- 50. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis, 2013, 13(3): 260-268.
- 51. Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol, 2019, 105(2): 329-338.
- 52. Riedemann NC, Guo RF, Ward PA. Novel strategies for the treatment of sepsis. Nat Med, 2003, 9(5): 517-524.
- 53. Santos SS, Carmo AM, Brunialti MK, et al. Modulation of monocytes in septic patients: preserved phagocytic activity, increased ROS and NO generation, and decreased production of inflammatory cytokines. Intensive Care Med Exp, 2016, 4(1): 5.
- 54. Shalova IN, Lim JY, Chittezhath M, et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity, 2015, 42(3): 484-98.
- 55. Lachmandas E, Beigier-Bompadre M, Cheng SC, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol, 2016, 46(11): 2574-2586.
- 56. Escoll P, Buchrieser C. Metabolic reprogramming: an innate cellular defence mechanism against intracellular bacteria?. Curr Opin Immunol, 2019, 60: 117-123.
- 57. Li H, Luo YF, Wang YS, et al. Using ROS as a second messenger, NADPH oxidase 2 mediates macrophage senescence via interaction with NF-κB during Pseudomonas aeruginosa infection. Oxid Med Cell Longev, 2018, 2018: 9741838.
- 58. Li H, Luo YF, Wang YS, et al. Pseudomonas aeruginosa induces cellular senescence in lung tissue at the early stage of two-hit septic mice. Pathog Dis, 2018, 76(9).
- 59. Zhao Q, Luo Y F, Tian M, et al. Activating transcription factor 3 involved in Pseudomonas aeruginosa PAO1-induced macrophage senescence. Mol Immunol, 2021, 133: 122-127.
- 60. Wolk K, Döcke WD, Von Baehr V, et al. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood, 2000, 96(1): 218-223.
- 61. Hou J, Chen Q, Wu X, et al. S1PR3 Signaling drives bacterial killing and is required for survival in bacterial sepsis. Am J Respir Crit Care Med, 2017, 196(12): 1559-1570.
- 62. Aachoui Y, Leaf I A, Hagar J A, et al. Caspase-11 protects against bacteria that escape the vacuole. Science, 2013, 339(6122): 975-978.
- 63. Broz P, Ruby T, Belhocine K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature, 2012, 490(7419): 288-291.
- 64. Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science, 2013, 341(6151): 1250-1253.
- 65. Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature, 2011, 479(7371): 117-121.
- 66. Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science, 2013, 341(6151): 1246-1249.
- 67. Rathinam VA, Vanaja SK, Waggoner L, et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell, 2012, 150(3): 606-619.
- 68. Wu B, Xu MM, Fan C, et al. STING inhibitor ameliorates LPS-induced ALI by preventing vascular endothelial cells-mediated immune cells chemotaxis and adhesion. Acta Pharmacol Sin, 2022, 43(8): 2055-2066.
- 69. Zhou S, Yang X, Mo K, et al. Pyroptosis and polarization of macrophages in septic acute lung injury induced by lipopolysaccharide in mice. Immun Inflamm Dis, 2024, 12(3): e1197.
- 70. Kang M, Kim HW, Yu AR, et al. Comparison of macrophage immune responses and metabolic reprogramming in smooth and rough variant infections of mycobacterium mucogenicum. Int J Mol Sci, 2022, 23(5): 2488.
- 71. Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care, 2014, 18(5): 503.
- 72. Suetrong B, Walley KR. Lactic acidosis in sepsis: it's not all anaerobic: implications for diagnosis and management. Chest, 2016, 149(1): 252-261.
- 73. 海天明, 曹猛, 姜晓旭, 等. 巨噬细胞重编程在炎症性疾病调控中的双向作用. 癌变·畸变·突变, 2024, 36(3): 248-252.
- 74. Gritte RB, Souza-Siqueira T, Borges Da Silva E, et al. Evidence for monocyte reprogramming in a long-term postsepsis study. Crit Care Explor, 2022, 4(8): e0734.
- 75. O'neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med, 2016, 213(1): 15-23.
- 76. Russell DG, Huang L, Vanderven BC. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol, 2019, 19(5): 291-304.
- 77. Barclay AN, Van Den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol, 2014, 32: 25-50.
- 78. Polara R, Ganesan R, Pitson SM, et al. Cell autonomous functions of CD47 in regulating cellular plasticity and metabolic plasticity. Cell Death Differ, 2024, 31(10): 1255-1266.
- 79. Cui Y, Chen J, Zhang Z, et al. The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med, 2023, 21(1): 892.
- 80. Yang S, Yang Y, Wang F, et al. TREM2 dictates antibacterial defense and viability of bone marrow-derived macrophages during bacterial infection. Am J Respir Cell Mol Biol, 2021, 65(2): 176-188.
- 81. Jaitin DA, Adlung L, Thaiss CA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell, 2019, 178(3): 686-698,e14.
- 82. Pérez-Diego M, Angelina A, Martín-Cruz L, et al. Cannabinoid WIN55, 212-2 reprograms monocytes and macrophages to inhibit LPS-induced inflammation. Front Immunol, 2023, 14: 1147520.
- 83. Møller K. Of cells and men: ex vivo and in vivo tolerance to lipopolysaccharide. Crit Care Med, 2011, 39(8): 1997-1998.
- 84. Xu H, Chen J, Si X, et al. PKR inhibition mediates endotoxin tolerance in macrophages through inactivation of PI3K/AKT signaling. Mol Med Rep, 2018, 17(6): 8548-8556.
- 85. 熊娟, 高明朗, 范国华. 白皮杉醇对脓毒症肺损伤小鼠代谢重编程的影响. 医学研究杂志, 2023, 52(1): 52-56.