1. |
Tang C, Fang K, Guo Y, et al. Safety of sulfur hexafluoride microbubbles in sonography of abdominal and superficial organs: retrospective analysis of 30, 222 cases. J Ultrasound Med, 2017, 36(3): 531-538.
|
2. |
Zhou LQ, Wang JY, Yu SY, et al. Artificial intelligence in medical imaging of the liver. World J Gastroenterol, 2019, 25(6): 672-682.
|
3. |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Cancer, 2018, 18(8): 500-510.
|
4. |
朱一丹, 李会娟, 武阳丰. 诊断准确性研究报告规范(STARD)2015介绍与解读. 中国循证医学杂志, 2016, 16(6): 730-735.
|
5. |
Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Clin Chem, 2015, 61(12): 1446-1452.
|
6. |
刘丹, 周吉银. 临床科研项目样本量的要求. 中国医学伦理学, 2019, 32(6): 716-718, 723.
|
7. |
Buderer NM. Statistical methodology: I. Incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad Emerg Med, 1996, 3(9): 895-900.
|
8. |
Baratloo A, Hosseini M, Negida A, et al. Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran), 2015, 3(2): 48-49.
|
9. |
Negida A, Fahim NK, Negida Y. Sample size calculation guide - part 4: how to calculate the sample size for a diagnostic test accuracy study based on sensitivity, specificity, and the area under the ROC curve. Adv J Emerg Med, 2019, 3(3): e33.
|
10. |
Wu K, Chen X, Ding M. Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Intern J Light Elect Opt, 2014, 125(15): 4057-4063.
|
11. |
Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc, 2018, 69(3): 343-354.
|
12. |
Malhotra RK, Indrayan A. A simple nomogram for sample size for estimating sensitivity and specificity of medical tests. Indian J Ophthalmol, 2010, 58(6): 519-522.
|
13. |
倪延延, 张晋昕. 假设检验时样本含量估计中容许误差δ的合理选取. 循证医学, 2011, 11(6): 370-372.
|
14. |
Hassan TM, Elmogy M, Sallam E. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arab J Sci Eng, 2017, 42(8): 3127-3140.
|
15. |
Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey. BioMed Res Int, 2018, 2018: 5137904-5137910.
|
16. |
Sugimoto K, Shiraishi J, Moriyasu F, et al. Computer-aided diagnosis of focal liver lesions by use of physicians' subjective classification of echogenic patterns in baseline and contrast-enhanced ultrasonography. Acad Radiol, 2009, 16(4): 401-411.
|
17. |
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med, 2019, 25(1): 70-74.
|
18. |
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, 2019, 394(10201): 861-867.
|
19. |
陈平雁. 临床试验中样本量确定的统计学考虑. 中国卫生统计, 2015, 32(4): 727-731, 733.
|