1. |
Greenland S, Pearl J, Robins JM. Confounding and collapsibility in causal inference. Stat Sci, 1999, 14(1): 29-46.
|
2. |
Ergina PL, Cook JA, Blazeby JM, et al. Challenges in evaluating surgical innovation. Lancet, 2009, 374(9695): 1097-1104.
|
3. |
Lonjon G, Porcher R, Ergina P, et al. Potential pitfalls of reporting and bias in observational studies with propensity score analysis assessing a surgical procedure: a methodological systematic review. Ann Surg, 2017, 265(5): 901-909.
|
4. |
Rosenbaum PR. Observational Studies. New York: Springer, 2002.
|
5. |
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41-55.
|
6. |
Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology, 2000, 11(5): 550-560.
|
7. |
Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. Epidemiology, 2003, 14(6): 680-686.
|
8. |
Baiocchi M, Cheng J, Small DS. Instrumental variable methods for causal inference. Stat Med, 2014, 33(13): 2297-2340.
|
9. |
Imbens GW, Rubin DB. Causal inference in statistics, social, and biomedical sciences. Cambridge: Cambridge University Press, 2015.
|
10. |
郭申阳. 倾向值分析: 统计方法与应用. 重庆: 重庆大学出版社, 2012.
|
11. |
Greenland S. Randomization, statistics, and causal inference. Epidemiology, 1990, 1(6): 421-429.
|
12. |
Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol, 1986, 15(3): 413-419.
|
13. |
Austin PC, Grootendorst P, Normand SL, et al. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Stat Med, 2007, 26(4): 754-768.
|
14. |
Shah BR, Laupacis A, Hux JE, et al. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol, 2005, 58(6): 550-559.
|
15. |
Austin PC. A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behav Res, 2011, 46(1): 119-151.
|
16. |
Robins JM. Marginal structural models versus structural nested models as tools for causal inference. New York: Springer, 2000: 95-133.
|
17. |
Rubin DB, Thomas N. Matching using estimated propensity scores: relating theory to practice. Biometrics, 1996: 249-264.
|
18. |
Heckman JJ. The scientific model of causality. Sociol Method, 2005, 35(1): 1-97.
|
19. |
Fang G, Brooks JM, Chrischilles EA. Apples and oranges. Interpretations of risk adjustment and instrumental variable estimates of intended treatment effects using observational data. Am J Epidemiol, 2012, 175(1): 60-65.
|
20. |
Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist's dream. Epidemiology, 2006, 17(4): 360-372.
|
21. |
Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Associat, 1996, 91(434): 444-455.
|
22. |
Gail MH, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika, 1984, 71(3): 431-444.
|
23. |
Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol, 1987, 125(5): 761-768.
|
24. |
Geng Z. Collapsibility of relative risk in contingency tables with a response variable. J Royal Stat Society, 1992, 54(2): 585-593.
|
25. |
Harris KM, Remler DK. Who is the marginal patient? Understanding instrumental variables estimates of treatment effects. Health Serv Res, 1998, 33(5 Pt 1): 1337.
|
26. |
Laborde-Castérot H, Agrinier N, Thilly N. Performing both propensity score and instrumental variable analyses in observational studies often leads to discrepant results: a systematic review. J Clin Epidemiol, 2015, 68(10): 1232-1240.
|