1. |
Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J, 2005, 26(2): 319-338.
|
2. |
Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J, 2005, 26(3): 511-522.
|
3. |
Macintyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J, 2005, 26(4): 720-735.
|
4. |
Graham BL, Brusasco V, Burgos F, et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J, 2017, 49(1): 1600016.
|
5. |
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第二部分)-肺量计检查. 中华结核和呼吸杂志, 2014, 37(7): 481-486.
|
6. |
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第三部分)––组织胺和乙酰甲胆碱支气管激发试验. 中华结核和呼吸杂志, 2014, 37(8): 566-571.
|
7. |
高怡, 韩江娜, 蒋雷服, 等. 肺功能检查指南(第四部分)-支气管舒张试验. 中华结核和呼吸杂志, 2014, 37(9): 655-658.
|
8. |
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南–肺弥散功能检查. 中华结核和呼吸杂志, 2015, 38(3): 164-169.
|
9. |
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南-肺容量检查. 中华结核和呼吸杂志, 2015, 38(4): 255-260.
|
10. |
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南-呼气峰值流量及其变异率检查. 中华结核和呼吸杂志, 2017, 40(6): 426-430.
|
11. |
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南-体积描记法肺容量和气道阻力检查. 中华结核和呼吸杂志, 2015, 38(5): 342-347.
|
12. |
Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J, 2005, 26(5): 948-968.
|
13. |
Culver BH, Graham BL, Coates AL, et al. Recommendations for a standardized pulmonary function report. an official American Thoracic Society technical statement. Am J Respir Crit Care Med, 2017, 196(11): 1463-1472.
|
14. |
Stanojevic S, Kaminsky DA, Miller MR, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J, 2022, 60(1): 2101499.
|
15. |
中国呼吸医师协会肺功能与临床呼吸生理工作委员会, 中华医学会呼吸病学分会呼吸治疗学组. 肺功能检查报告规范-肺量计检查,支气管舒张试验,支气管激发试验. 中华医学杂志, 2019, 99(22): 1681-1691.
|
16. |
Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J, 2012, 40(6): 1324-1343.
|
17. |
Stanojevic S, Graham BL, Cooper BG, et al. Official ERS technical standards: global lung function initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J, 2017, 50(3): 1700010.
|
18. |
Hall GL, Filipow N, Ruppel G, et al. Official ERS technical standard: global lung function initiative reference values for static lung volumes in individuals of European ancestry. Eur Respir J, 2021, 57(3): 2000289.
|
19. |
Jian W, Gao Y, Hao C, et al. Reference values for spirometry in Chinese aged 4-80 years. J Thorac Dis, 2017, 9(11): 4538-4549.
|
20. |
Miller MR, Quanjer PH, Swanney MP, et al. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest, 2011, 139(1): 52-59.
|
21. |
Oelsner EC, Balte PP, Bhatt SP, et al. Lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study. Lancet Respir Med, 2020, 8(1): 34-44.
|
22. |
Redlich CA, Tarlo SM, Hankinson JL, et al. Official American Thoracic Society technical standards: spirometry in the occupational setting. Am J Respir Crit Care Med, 2014, 189(8): 983-993.
|
23. |
Miller MR, Pedersen OF. New concepts for expressing forced expiratory volume in 1 s arising from survival analysis. Eur Respir J, 2010, 35(4): 873-882.
|
24. |
Pedone C, Scarlata S, Scichilone N, et al. Alternative ways of expressing FEV1 and mortality in elderly people with and without COPD. Eur Respir J, 2013, 41(4): 800-805.
|
25. |
Huang TH, Hsiue TR, Lin SH, et al. Comparison of different staging methods for COPD in predicting outcomes. Eur Respir J, 2018, 51(3): 1700577.
|
26. |
Stanojevic S, Filipow N, Ratjen F. Paediatric reproducibility limits for the forced expiratory volume in 1 s. Thorax, 2020, 75(10): 891-896.
|
27. |
Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. an official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med, 2019, 200(8): e70-e88.
|
28. |
Tan WC, Vollmer WM, Lamprecht B, et al. Worldwide patterns of bronchodilator responsiveness: results from the burden of obstructive lung disease study. Thorax, 2012, 67(8): 718-726.
|
29. |
Quanjer PH, Ruppel GL, Langhammer A, et al. Bronchodilator response in FVC is larger and more relevant than in FEV1 in severe airflow obstruction. Chest, 2017, 151(5): 1088-1098.
|
30. |
Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J, 2019, 53(5): 1900164.
|
31. |
Qaseem A, Wilt TJ, Weinberger SE, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med, 2011, 155(3): 179-191.
|
32. |
Pellegrino R, Brusasco V, Miller MR. Question everything. Eur Respir J, 2014, 43(4): 947-948.
|
33. |
Ronish BE, Couper DJ, Barjaktarevic IZ, et al. Forced expiratory flow at 25%-75% links COPD physiology to emphysema and disease severity in the SPIROMICS cohort. Chronic Obstr Pulm Dis, 2022, 9(2): 111-121.
|
34. |
Yee N, Markovic D, Buhr RG, et al. Significance of FEV3/FEV6 in recognition of early airway disease in smokers at risk of development of COPD: analysis of the SPIROMICS cohort. Chest, 2022, 161(4): 949-959.
|
35. |
Zimmermann SC, Tonga KO, Thamrin C. Dismantling airway disease with the use of new pulmonary function indices. Eur Respir Rev, 2019, 28(151): 180122.
|
36. |
Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol, 1974, 37(1): 67-74.
|
37. |
Forno E, Weiner DJ, Mullen J, et al. Obesity and airway dysanapsis in children with and without asthma. Am J Respir Crit Care Med, 2017, 195(3): 314-323.
|
38. |
Thompson BR. Dysanapsis-once believed to be a physiological curiosity-is now clinically important. Am J Respir Crit Care Med, 2017, 195(3): 277-278.
|
39. |
Smith BM, Kirby M, Hoffman EA, et al. Association of dysanapsis with chronic obstructive pulmonary disease among older adults. JAMA, 2020, 323(22): 2268-2280.
|
40. |
Marott JL, Ingebrigtsen TS, Çolak Y, et al. Trajectory of preserved ratio impaired spirometry: natural history and long-term prognosis. Am J Respir Crit Care Med, 2021, 204(8): 910-920.
|
41. |
Fortis S, Comellas A, Kim V, et al. Low FVC/TLC in preserved ratio impaired spirometry (PRISm) is associated with features of and progression to obstructive lung disease. Sci Rep, 2020, 10(1): 5169.
|
42. |
Wan ES, Fortis S, Regan EA, et al. Longitudinal phenotypes and mortality in preserved ratio impaired spirometry in the COPDGene study. Am J Respir Crit Care Med, 2018, 198(11): 1397-1405.
|
43. |
Stanojevic S, Wade A, Stocks J, et al. Reference ranges for spirometry across all ages: a new approach. Am J Respir Crit Care Med, 2008, 177(3): 253-260.
|
44. |
Quanjer PH, Pretto JJ, Brazzale DJ, et al. Grading the severity of airways obstruction: new wine in new bottles. Eur Respir J, 2014, 43(2): 505-512.
|
45. |
Miller MR, Cooper BG. Reduction in T LCO and survival in a clinical population. Eur Respir J, 2021, 58(5): 2002046.
|
46. |
郑劲平, 梁晓林. “美国胸科学会推荐的标准化肺功能报告”之解读和商榷. 中国循证医学杂志, 2018, 18(3): 249-253.
|
47. |
Topalovic M, Das N, Burgel PR, et al. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur Respir J, 2019, 53(4): 1801660.
|
48. |
Das N, Verstraete K, Stanojevic S, et al. Deep-learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria. Eur Respir J, 2020, 56(6): 2000603.
|
49. |
Wang Y, Li Q, Chen W, et al. Deep learning-based analytic models based on flow-volume curves for identifying ventilatory patterns. Front Physiol, 2022, 13: 824000.
|
50. |
Wang Y, Li Y, Chen W, et al. Deep learning for automatic upper airway obstruction detection by analysis of flow-volume curve. Respiration, 2022, 101(9): 841-850.
|
51. |
Wang Y, Chen W, Li Y, et al. Clinical analysis of the "small plateau" sign on the flow-volume curve followed by deep learning automated recognition. BMC Pulm Med, 2021, 21(1): 359.
|