1. |
Faulkner E, Holtorf AP, Walton S, et al. Being precise about precision medicine: what should value frameworks incorporate to address precision medicine. A report of the personalized precision medicine special interest group. Value Health, 2020, 23(5): 529-539.
|
2. |
Wynants L, Van Calster B, Collins GS, et al. Update to living systematic review on prediction models for diagnosis and prognosis of covid-19. BMJ, 2021, 372: n236.
|
3. |
Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 2016, 353: i2416.
|
4. |
Bellou V, Belbasis L, Konstantinidis AK, et al. Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal. BMJ, 2019, 367: l5358.
|
5. |
Kreuzberger N, Damen JA, Trivella M, et al. Prognostic models for newly-diagnosed chronic lymphocytic leukaemia in adults: a systematic review and meta-analysis. Cochrane Database Syst Rev, 2020, (7): CD012022.
|
6. |
Black N, Henderson I, Al Wattar BH, et al. Predictive models for estimating the probability of successful vaginal birth after cesarean delivery: a systematic review. Obstet Gynecol, 2022, 140(5): 821-841.
|
7. |
Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med, 2012, 9(5): 1-12.
|
8. |
Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ, 2017, 356: i6460.
|
9. |
Heus P, Damen JAAG, Pajouheshnia R, et al. Poor reporting of multivariable prediction model studies: towards a targeted implementation strategy of the TRIPOD statement. BMC Med, 2018, 16(1): 120.
|
10. |
Damen JAA, Moons KGM, van Smeden M, et al. How to conduct a systematic review and meta-analysis of prognostic model studies. Clin Microbiol Infect, 2023, 29(4): 434-440.
|
11. |
Belbasis L, Panagiotou OA. Reproducibility of prediction models in health services research. BMC Res Notes, 2022, 15(1): 204.
|
12. |
Moons KG, Hooft L, Williams K, et al. Implementing systematic reviews of prognosis studies in Cochrane. Cochrane Database Syst Rev, 2018, 10: ED000129.
|
13. |
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
14. |
Geersing GJ, Bouwmeester W, Zuithoff P, et al. Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews. PLoS One, 2012, 7(2): e32844.
|
15. |
Ingui BJ, Rogers MA. Searching for clinical prediction rules in MEDLINE. J Am Med Inform Assoc, 2001, 8(4): 391-397.
|
16. |
Wong SS, Wilczynski NL, Haynes RB, et al. Developing optimal search strategies for detecting sound clinical prediction studies in MEDLINE. AMIA Annu Symp Proc, 2003, 2003: 728-732.
|
17. |
Bonnett LJ, Snell KIE, Collins GS, et al. Guide to presenting clinical prediction models for use in clinical settings. BMJ, 2019, 365: l737.
|
18. |
Van Calster B, Wynants L, Verbeek JFM, et al. Reporting and interpreting decision curve analysis: a guide for investigators. Eur Urol, 2018, 74(6): 796-804.
|
19. |
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ, 2016, 352: i6.
|
20. |
Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA, 2017, 318(14): 1377-1384.
|
21. |
Debray TP, Vergouwe Y, Koffijberg H, et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol, 2015, 68(3): 279-289.
|
22. |
Vergouwe Y, Moons KG, Steyerberg EW. External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol, 2010, 172(8): 971-980.
|
23. |
Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med, 2019, 17(1): 230.
|
24. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
25. |
陈香萍, 张奕, 庄一渝, 等. PROBAST: 诊断或预后多因素预测模型研究偏倚风险的评估工具. 中国循证医学杂志, 2020, 20(6): 737-744.
|
26. |
Ban JW, Emparanza JI, Urreta I, et al. Design characteristics influence performance of clinical prediction rules in validation: a meta-epidemiological study. PLoS One, 2016, 11(1): e0145779.
|
27. |
Debray TP, Damen JA, Riley RD, et al. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat Methods Med Res, 2019, 28(9): 2768-2786.
|
28. |
van Klaveren D, Steyerberg EW, Perel P, et al. Assessing discriminative ability of risk models in clustered data. BMC Med Res Methodol, 2014, 14: 5.
|
29. |
IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol, 2014, 14: 25.
|
30. |
Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ, 2011, 342: d549.
|
31. |
Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc, 2009, 172(1): 137-159.
|
32. |
Pennells L, Kaptoge S, White IR, et al. Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol, 2014, 179(5): 621-632.
|
33. |
Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, 2016, 353: i3140.
|
34. |
Belias M, Rovers MM, Reitsma JB, et al. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study. BMC Med Res Methodol, 2019, 19(1): 183.
|
35. |
Snell KI, Hua H, Debray TP, et al. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model. J Clin Epidemiol, 2016, 69: 40-50.
|
36. |
Riley RD, Jackson D, Salanti G, et al. Multivariate and network meta-analysis of multiple outcomes and multiple treatments: rationale, concepts, and examples. BMJ, 2017, 358: j3932.
|
37. |
Wynants L, Riley RD, Timmerman D, et al. Random-effects meta-analysis of the clinical utility of tests and prediction models. Stat Med, 2018, 37(12): 2034-2052.
|
38. |
Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ, 2015, 350: h870.
|
39. |
Foroutan F, Guyatt G, Zuk V, et al. GRADE Guidelines 28: use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. J Clin Epidemiol, 2020, 121: 62-70.
|
40. |
Huguet A, Hayden JA, Stinson J, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev, 2013, 2: 71.
|
41. |
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021, 372: n71.
|
42. |
Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 2021, 372: n160.
|
43. |
Stewart LA, Clarke M, Rovers M, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD Statement. JAMA, 2015, 313(16): 1657-1665.
|
44. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.
|
45. |
Debray TP, Riley RD, Rovers MM, et al. Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med, 2015, 12(10): e1001886.
|
46. |
Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med, 2015, 162(1): W1-73.
|
47. |
Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 2021, 11(7): e048008.
|
48. |
Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet, 2019, 393(10181): 1577-1579.
|