1. |
Hendriksen JM, Geersing GJ, Moons KG, et al. Diagnostic and prognostic prediction models. J Thromb Haemost, 2013, 11(Suppl 1): 129-141.
|
2. |
Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 2016, 353: i2416.
|
3. |
Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ, 2017, 356: i6460.
|
4. |
Heus P, Damen JAAG, Pajouheshnia R, et al. Poor reporting of multivariable prediction model studies: towards a targeted implementation strategy of the TRIPOD statement. BMC Med, 2018, 16(1): 120.
|
5. |
Belbasis L, Panagiotou OA. Reproducibility of prediction models in health services research. BMC Res Notes, 2022, 15(1): 204.
|
6. |
Deng B, Li Y, Chen JY, et al. Prediction models of vaginal birth after cesarean delivery: a systematic review. Int J Nurs Stud, 2022, 135: 104359.
|
7. |
Snell KIE, Levis B, Damen JAA, et al. Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA). BMJ, 2023, 381: e073538.
|
8. |
郭淑杰, 王艳红, 赵亚楠, 等. 产后出血风险预测模型的系统评价. 中国循证医学杂志, 2022, 22(11): 1287-1300.
|
9. |
杨晓, 伏建林, 周会兰. 基于机器学习方法构建小于胎龄儿预测模型的系统评价. 中国循证医学杂志, 2023, 23(3): 334-340.
|
10. |
蔡真真, 陈媛, 林碧霞. 心血管疾病患者院内心脏骤停风险预测模型的系统评价. 中国循证医学杂志, 2022, 22(10): 1175-1181.
|
11. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.
|
12. |
Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist. BMJ, 2023, 380: e071018.
|
13. |
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021, 372: n71.
|
14. |
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 2009, 339: b2535.
|
15. |
Joshi A, Kale S, Chandel S, et al. Likert scale: explored and explained. Br J Appl Sci Technol, 2015, 7: 396-403.
|
16. |
Riley RD, Moons KGM, Snell KIE, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ, 2019, 364: k4597.
|
17. |
Riley RD, Debray TPA, Fisher D, et al. Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: statistical recommendations for conduct and planning. Stat Med, 2020, 39(15): 2115-2137.
|
18. |
van Giessen A, Peters J, Wilcher B, et al. Systematic review of health economic impact evaluations of risk prediction models: stop developing, start evaluating. Value Health, 2017, 20(4): 718-726.
|
19. |
Moons KG, Altman DG, Vergouwe Y, et al. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ, 2009, 338: b606.
|
20. |
van Beek PE, Andriessen P, Onland W, et al. Prognostic models predicting mortality in preterm infants: systematic review and meta-analysis. Pediatrics, 2021, 147(5): e2020020461.
|
21. |
Montori VM, Wilczynski NL, Morgan D, et al. Optimal search strategies for retrieving systematic reviews from Medline: analytical survey. BMJ, 2005, 330(7482): 68.
|
22. |
卢存存, 张强, 雷超, 等. 使用队列和常规收集数据开展随机对照试验的报告清单(CONSORT-ROUTINE2021)解读. 中国循证医学杂志, 2022, 22(6): 731-738.
|
23. |
鲁小丹, 卫建华, 沈建通, 等. 预测模型系统评价的制作方法与步骤. 中国循证医学杂志, 2023, 23(5): 602-609.
|
24. |
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 2009, 339: b2700.
|
25. |
Dwan K, Altman DG, Arnaiz JA, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One, 2008, 3(8): e3081.
|
26. |
Khalil H, Ameen D, Zarnegar A. Tools to support the automation of systematic reviews: a scoping review. J Clin Epidemiol, 2022, 144: 22-42.
|
27. |
Mahmić-Kaknjo M, Tomić V, Ellen ME, et al. Delphi survey on the most promising areas and methods to improve systematic reviews' production and updating. Syst Rev, 2023, 12(1): 56.
|
28. |
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
29. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
30. |
de Jong Y, Ramspek CL, Zoccali C, et al. Appraising prediction research: a guide and meta-review on bias and applicability assessment using the prediction model risk of bias assessment tool (PROBAST). Nephrology (Carlton), 2021, 26(12): 939-947.
|
31. |
Tatas Z, Koutsiouroumpa O, Seehra J, et al. Do pooled estimates from orthodontic meta-analyses change depending on the meta-analysis approach. A meta-epidemiological study. Eur J Orthod, 2023, 12: cjad031.
|
32. |
Brozek JL, Canelo-Aybar C, Akl EA, et al. GRADE guidelines 30: the GRADE approach to assessing the certainty of modeled evidence-an overview in the context of health decision-making. J Clin Epidemiol, 2021, 129: 138-150.
|
33. |
Pieper D, Rombey T. Where to prospectively register a systematic review. Syst Rev, 2022, 11(1): 8.
|
34. |
Hakoum MB, Anouti S, Al-Gibbawi M, et al. Reporting of financial and non-financial conflicts of interest by authors of systematic reviews: a methodological survey. BMJ Open, 2016, 6(8): e011997.
|
35. |
Saldanha IJ, Smith BT, Ntzani E, et al. The Systematic Review Data Repository (SRDR): descriptive characteristics of publicly available data and opportunities for research. Syst Rev, 2019, 8(1): 334.
|
36. |
Sahni NR, Carrus B. Artificial intelligence in U. S. health care delivery. N Engl J Med, 2023, 389(4): 348-358.
|