1. |
Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381.
|
2. |
Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375.
|
3. |
谷鸿秋, 周支瑞, 章仲恒, 等. 临床预测模型: 基本概念、应用场景及研究思路. 中国循证心血管医学杂志, 2018, 10(12): 1454-1456, 1462.
|
4. |
Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. Cham: Springer International Publishing, 2019.
|
5. |
Santos R, Coleman HG, Cairnduff V, et al. Clinical prediction models for pancreatic cancer in general and at-risk populations: a systematic review. Am J Gastroenterol, 2023, 118(1): 26-40.
|
6. |
Buttia C, Llanaj E, Raeisi-Dehkordi H, et al. Prognostic models in COVID-19 infection that predict severity: a systematic review. Eur J Epidemiol, 2023, 38(4): 355-372.
|
7. |
Kostopoulos G, Doundoulakis I, Toulis KA, et al. Prognostic models for heart failure in patients with type 2 diabetes: a systematic review and meta-analysis. Heart, 2023, 109(19): 1436-1442.
|
8. |
Pladet LCA, Barten JMM, Vernooij LM, et al. Prognostic models for mortality risk in patients requiring ECMO. Intensive Care Med, 2023, 49(2): 131-141.
|
9. |
Ohyama Y, Iwamura T, Hoshino T, et al. Prognostic models of quality of life after total knee replacement: a systematic review. Physiother Theory Pract, 2023.
|
10. |
Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. BMJ, 2020: m1328.
|
11. |
Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med, 2015, 162(1): W1-W73.
|
12. |
Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med, 2006, 144(3): 201-209.
|
13. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Diabet Med, 2015, 32(2): 146-154.
|
14. |
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
15. |
Pajouheshnia R, Groenwold RHH, Peelen LM, et al. When and how to use data from randomised trials to develop or validate prognostic models. BMJ, 2019, 365: l2154.
|
16. |
Harrell FE. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Cham: Springer International Publishing, 2015.
|
17. |
Hemingway H. Prognosis research: why is Dr. Lydgate still waiting? J Clin Epidemiol, 2006, 59(12): 1229-1238.
|
18. |
Clark TG, Bradburn MJ, Love SB, et al. Survival analysis part I: basic concepts and first analyses. Br J Cancer, 2003, 89(2): 232-238.
|
19. |
Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med, 2019, 38(7): 1276-1296.
|
20. |
van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res, 2019, 28(8): 2455-2474.
|
21. |
Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368: m441.
|
22. |
Little RJA, Rubin DB. Statistical analysis with missing data (3rd edition). Hoboken: Wiley, 2020.
|
23. |
Graham JW. Missing data analysis: making it work in the real world. Annu Rev Psychol, 2009, 60: 549-576.
|
24. |
Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ, 2006, 332(7549): 1080.
|
25. |
Bietenbeck A, Cervinski MA, Katayev A, et al. Understanding patient-based real-time quality control using simulation modeling. Clin Chem, 2020, 66(8): 1072-1083.
|
26. |
谷鸿秋, 王俊峰, 章仲恒, 等. 临床预测模型: 模型的建立. 中国循证心血管医学杂志, 2019, 11(1): 14-16, 23.
|
27. |
Rao SJ. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. J Am Stat Assoc, 2003, 98(461): 257-258.
|
28. |
Heinze G, Wallisch C, Dunkler D. Variable selection - a review and recommendations for the practicing statistician. Biom J, 2018, 60(3): 431-449.
|
29. |
Iasonos A, Schrag D, Raj GV, et al. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol, 2008, 26(8): 1364-1370.
|
30. |
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med, 2019, 380(14): 1347-1358.
|
31. |
Price WN. Big data and black-box medical algorithms. Sci Transl Med, 2018, 10(471): eaao5333.
|
32. |
Salih A, Boscolo Galazzo I, Gkontra P, et al. Explainable artificial intelligence and cardiac imaging: toward more interpretable models. Circ Cardiovasc Imaging, 2023, 16(4): e014519.
|
33. |
Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology, 2010, 21(1): 128-138.
|
34. |
Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA, 2017, 318(14): 1377-1384.
|
35. |
Pencina MJ, D'Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med, 2011, 30(1): 11-21.
|
36. |
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ, 2016, 352: i6.
|
37. |
Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. JAMA, 2015, 313(4): 409-410.
|
38. |
Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol. 2016, 69: 245-247.
|
39. |
Steyerberg EW. Validation in prediction research: the waste by data splitting. J Clin Epidemiol, 2018, 103: 131-133.
|
40. |
Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. BMJ, 2009, 338: b605.
|
41. |
Hutter F, Kotthoff L, Vanschoren J. Automated machine learning: methods, systems, challenges. Cham: Springer International Publishing, 2019.
|
42. |
Debray TP, Vergouwe Y, Koffijberg H, et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol, 2015, 68(3): 279-289.
|
43. |
Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med, 2016, 35(2): 214-226.
|
44. |
Snell KIE, Archer L, Ensor J, et al. External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb. J Clin Epidemiol, 2021, 135: 79-89.
|
45. |
Bonnett LJ, Snell KIE, Collins GS, et al. Guide to presenting clinical prediction models for use in clinical settings. BMJ, 2019, 365: l737.
|
46. |
李笑丛, 王闯世, 郝军, 等. 临床预测模型校准与更新方法介绍及R软件实现. 中国循证医学杂志, 2023, 23(1): 112-119.
|
47. |
曹煜隆, 单娇, 龚志忠, 等. 个体预后与诊断预测模型研究报告规范—TRIPOD声明解读. 中国循证医学杂志, 2020, 20(4): 492-496.
|
48. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
49. |
Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med, 2019, 170(1): W1-W33.
|
50. |
Liu Y, Chen PC, Krause J, et al. How to read articles that use machine learning: users' guides to the medical literature. JAMA, 2019, 322(18): 1806-1816.
|
51. |
Faes L, Liu X, Wagner SK, et al. A clinician's guide to artificial intelligence: how to critically appraise machine learning studies. Transl Vis Sci Technol, 2020, 9(2): 7.
|
52. |
Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 2021, 11(7): e048008.
|