1. |
严律南. 人工智能在医学领域应用的现状与展望. 中国普外基础与临床杂志, 2018, 25(5): 513-514.
|
2. |
Nepogodiev D, Martin J, Biccard B, et al. Global burden of postoperative death. Lancet, 2019, 393(10170): 401.
|
3. |
Hashimoto DA, Witkowski E, Gao L, et al. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology, 2020, 132(2): 379-394.
|
4. |
Durrand JW, Moore J, Danjoux G. Prehabilitation and preparation for surgery: has the digital revolution arrived. Anaesthesia, 2022, 77(6): 635-639.
|
5. |
徐东, 陈江芸, 蔡毅媛. 实施科学的前世今生(上篇)—起源与发展. 协和医学杂志, 2024, 15(2): 442-449.
|
6. |
Shaw J, Rudzicz F, Jamieson T, et al. Artificial intelligence and the implementation challenge. J Med Internet Res, 2019, 21(7): e13659.
|
7. |
van der Meijden SL, Arbous MS, Geerts BF. Possibilities and challenges for artificial intelligence and machine learning in perioperative care. BJA Educ, 2023, 23(8): 288-294.
|
8. |
Borges do Nascimento IJ, Abdulazeem H, Vasanthan LT, et al. Barriers and facilitators to utilizing digital health technologies by healthcare professionals. NPJ Digit Med, 2023, 6(1): 161.
|
9. |
Hamilton AB, Finley EP. Qualitative methods in implementation research: an introduction. Psychiatry Res, 2019, 280: 112516.
|
10. |
谢润生, 徐东, 李慧, 等. 医疗卫生领域中实施科学的研究方法. 中国循证医学杂志, 2020, 20(9): 1104-1110.
|
11. |
张静怡, 张雅婷, 盖琼艳, 等. 定性资料的系统评价方法学汇总. 中国循证心血管医学杂志, 2017, 9(5): 523-527.
|
12. |
靳英辉, 高维杰, 李艳, 等. 质性研究证据评价及其循证转化的研究进展. 中国循证医学杂志, 2015, 15(12): 1458-1464.
|
13. |
Hannes K, Lockwood C, Pearson A. A comparative analysis of three online appraisal instruments' ability to assess validity in qualitative research. Qual Health Res, 2010, 20(12): 1736-1743.
|
14. |
Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med, 2015, 8(1): 2-10.
|
15. |
陈文嘉, 徐东, 李慧, 等. 实施科学理论的分类与介绍. 中国循证医学杂志, 2020, 20(8): 986-992.
|
16. |
Gama F, Tyskbo D, Nygren J, et al. Implementation frameworks for artificial intelligence translation into health care practice: scoping review. J Med Internet Res, 2022, 24(1): e32215.
|
17. |
Greenhalgh T, Wherton J, Papoutsi C, et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J Med Internet Res, 2017, 19(11): e367.
|
18. |
Abraham J, Bartek B, Meng A, et al. Integrating machine learning predictions for perioperative risk management: towards an empirical design of a flexible-standardized risk assessment tool. J Biomed Inform, 2023, 137: 104270.
|
19. |
Abraham J, King CR, Meng A. Ascertaining design requirements for postoperative care transition interventions. Appl Clin Inform, 2021, 12(1): 107-115.
|
20. |
Berge GT, Granmo OC, Tveit TO, et al. Machine learning-driven clinical decision support system for concept-based searching: a field trial in a Norwegian hospital. BMC Med Inform Decis Mak, 2023, 23(1): 5.
|
21. |
Estrada Alamo CE, Diatta F, Monsell SE, et al. Artificial intelligence in anesthetic care: a survey of physician anesthesiologists. Anesth Analg, 2024, 138(5): 938-950.
|
22. |
Cobianchi L, Verde JM, Loftus TJ, et al. Artificial intelligence and surgery: ethical dilemmas and open issues. J Am Coll Surg, 2022, 235(2): 268-275.
|
23. |
Collins JW, Marcus HJ, Ghazi A, et al. Ethical implications of AI in robotic surgical training: a Delphi consensus statement. Eur Urol Focus, 2022, 8(2): 613-622.
|
24. |
Greenberg JK, Otun A, Nasraddin A, et al. Electronic clinical decision support for children with minor head trauma and intracranial injuries: a sociotechnical analysis. BMC Med Inform Decis Mak, 2021, 21(1): 161.
|
25. |
Hameed MS, Laplante S, Masino C, et al. What is the educational value and clinical utility of artificial intelligence for intraoperative and postoperative video analysis. A survey of surgeons and trainees. Surg Endosc, 2023, 37(12): 9453-9460.
|
26. |
Henckert D, Malorgio A, Schweiger G, et al. Attitudes of anesthesiologists toward artificial intelligence in anesthesia: a multicenter, mixed qualitative-quantitative study. J Clin Med, 2023, 12(6): 2096.
|
27. |
Kang MJ, De Gagne JC, Kang HS. Perioperative nurses' work experience with robotic surgery: a focus group study. Comput Inform Nurs, 2016, 34(4): 152-158.
|
28. |
King CR, Shambe A, Abraham J. Potential uses of AI for perioperative nursing handoffs: a qualitative study. JAMIA Open, 2023, 6(1): ooad015.
|
29. |
Lesselroth BJ, Yang J, McConnachie J, et al. Addressing the sociotechnical drivers of quality improvement: a case study of post-operative DVT prophylaxis computerised decision support. BMJ Qual Saf, 2011, 20(5): 381-389.
|
30. |
Li B, de Mestral C, Mamdani M, et al. Perceptions of Canadian vascular surgeons toward artificial intelligence and machine learning. J Vasc Surg Cases Innov Tech, 2022, 8(3): 466-472.
|
31. |
Moloney R, Coffey A, Coffey C, et al. Patients' experience of robotic-assisted surgery: a qualitative study. Br J Nurs, 2023, 32(6): 298-305.
|
32. |
Mudumbai S, Ayer F, Stefanko J. Perioperative and ICU healthcare analytics within a veterans integrated system network: a qualitative gap analysis. J Med Syst, 2017, 41(8): 118.
|
33. |
Pecqueux M, Riediger C, Distler M, et al. The use and future perspective of artificial intelligence-a survey among German surgeons. Front Public Health, 2022, 10: 982335.
|
34. |
Randell R, Greenhalgh J, Hindmarsh J, et al. How do team experience and relationships shape new divisions of labour in robot-assisted surgery. A realist investigation. Health (London), 2021, 25(2): 250-268.
|
35. |
Safranek CW, Feitzinger L, Joyner AKC, et al. Visualizing opioid-use variation in a pediatric perioperative dashboard. Appl Clin Inform, 2022, 13(2): 370-379.
|
36. |
Schuessler Z, Scott Stiles A, Mancuso P. Perceptions and experiences of perioperative nurses and nurse anaesthetists in robotic-assisted surgery. J Clin Nurs, 2020, 29(1-2): 60-74.
|
37. |
Silveira Thomas Porto C, Catal E. A comparative study of the opinions, experiences and individual innovativeness characteristics of operating room nurses on robotic surgery. J Adv Nurs, 2021, 77(12): 4755-4767.
|
38. |
Vedula SS, Ghazi A, Collins JW, et al. Artificial intelligence methods and artificial intelligence-enabled metrics for surgical education: a multidisciplinary consensus. J Am Coll Surg, 2022, 234(6): 1181-1192.
|
39. |
Zhao B, Lam J, Hollandsworth HM, et al. General surgery training in the era of robotic surgery: a qualitative analysis of perceptions from resident and attending surgeons. Surg Endosc, 2020, 34(4): 1712-1721.
|
40. |
Maheshwari K, Cywinski JB, Papay F, et al. Artificial intelligence for perioperative medicine: perioperative intelligence. Anesth Analg, 2023, 136(4): 637-645.
|
41. |
破晓过后, 初日照林. 中国人工智能+医疗与生命科学行业研究报告. 艾瑞咨询系列研究报告, 2021, (11): 82.
|
42. |
Jain B, Rahim FO, Thirumala PD, et al. Cost-benefit analysis of intraoperative neuromonitoring for cardiac surgery. J Stroke Cerebrovasc Dis, 2024, 33(3): 107576.
|
43. |
Kiyasseh D, Zhu T, Clifton D. The promise of clinical decision support systems targetting low-resource settings. IEEE Rev Biomed Eng, 2022, 15: 354-371.
|
44. |
刘永. 医院集成平台建设中的数据治理. 信息系统工程, 2023(1): 119-121.
|
45. |
Roshanov PS, Fernandes N, Wilczynski JM, et al. Features of effective computerised clinical decision support systems: meta-regression of 162 randomised trials. BMJ, 2013, 346: f657.
|
46. |
DeCamp M, Lindvall C. Mitigating bias in AI at the point of care. Science, 2023, 381(6654): 150-152.
|
47. |
Ferryman K, Mackintosh M, Ghassemi M. Considering biased data as informative artifacts in AI-assisted health care. N Engl J Med, 2023, 389(9): 833-838.
|
48. |
申红霞, 严斯静, 黎敏仪, 等. 实施科学中实施策略的介绍. 中国循证医学杂志, 2023, 23(6): 708-714.
|