1. |
Dankers F, Traverso A, Wee L, et al. Prediction modeling methodology. Kubben P, Dumontier M, Dekker A. Fundamentals of clinical data science. Cham (CH): Springer Copyright, 2019.
|
2. |
谷鸿秋, 周支瑞, 章仲恒, 等. 临床预测模型: 基本概念、应用场景及研究思路. 中国循证心血管医学杂志, 2018, 10(12): 1454-1456,1462.
|
3. |
Lee YH, Bang H, Kim DJ. How to establish clinical prediction models. Endocrinol Metab (Seoul), 2016, 31(1): 38-44.
|
4. |
Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med, 2012, 9(5): 1-12.
|
5. |
Efthimiou O, Seo M, Chalkou K, et al. Developing clinical prediction models: a step-by-step guide. BMJ, 2024, 386: e078276.
|
6. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med, 2015, 162(1): 55-63.
|
7. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
8. |
Ramspek CL, Jager KJ, Dekker FW, et al. External validation of prognostic models: what, why, how, when and where. Clin Kidney J, 2020, 14(1): 49-58.
|
9. |
Dankowski T, Ziegler A. Calibrating random forests for probability estimation. Stat Med, 2016, 35(22): 3949-3960.
|
10. |
Schuurmans M, Saha A, Alves N, et al. End-to-end prognostication in pancreatic cancer by multimodal deep learning: a retrospective, multicenter study. Eur Radiol, 2025.
|
11. |
Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ, 2006, 332(7549): 1080.
|
12. |
Fedorov V, Mannino F, Zhang R. Consequences of dichotomization. Pharm Stat, 2009, 8(1): 50-61.
|
13. |
Leisman DE, Harhay MO, Lederer DJ, et al. Development and reporting of prediction models: guidance for authors from editors of respiratory, sleep, and critical care journals. Crit Care Med, 2020, 48(5): 623-633.
|
14. |
Rhon DI, Teyhen DS, Collins GS, et al. Predictive models for musculoskeletal injury risk: why statistical approach makes all the difference. BMJ Open Sport Exerc Med, 2022, 8(4): e001388.
|
15. |
Collins GS, Ogundimu EO, Cook JA, et al. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. Stat Med, 2016, 35(23): 4124-4135.
|
16. |
Sanchez-Pinto LN, Venable LR, Fahrenbach J, et al. Comparison of variable selection methods for clinical predictive modeling. Int J Med Inform, 2018, 116: 10-17.
|
17. |
Taipale H, Schneider-Thoma J, Pinzón-Espinosa J, et al. Representation and outcomes of individuals with schizophrenia seen in everyday practice who are ineligible for randomized clinical trials. JAMA Psychiatry, 2022, 79(3): 210-218.
|
18. |
Bennett DA, Landry D, Little J, et al. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology. BMC Med Res Methodol, 2017, 17(1): 146.
|
19. |
Yan F, Chen X, Quan X, et al. Association between the stress hyperglycemia ratio and 28-day all-cause mortality in critically ill patients with sepsis: a retrospective cohort study and predictive model establishment based on machine learning. Cardiovasc Diabetol, 2024, 23(1): 163.
|
20. |
Barkley SE, Mason JL, Kappelman MM. An assessment of entering freshman medical students' knowledge of and attitudes toward AIDS. Res Med Educ, 1988, 27: 221-225.
|
21. |
van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 2014, 14: 137.
|
22. |
Infante G, Miceli R, Ambrogi F. Sample size and predictive performance of machine learning methods with survival data: a simulation study. Stat Med, 2023, 42(30): 5657-5675.
|
23. |
Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ, 2009, 338: b2393.
|
24. |
Sisk R, Sperrin M, Peek N, et al. Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: a simulation study. Stat Methods Med Res, 2023, 32(8): 1461-1477.
|
25. |
Schafer JL. Multiple imputation: a primer. Stat Methods Med Res, 1999, 8(1): 3-15.
|
26. |
Deo RC. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
|
27. |
Lo Vercio L, Amador K, Bannister JJ, et al. Supervised machine learning tools: a tutorial for clinicians. J Neural Eng, 2020, 17(6): abbff2.
|
28. |
Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ, 2021, 375: n2281.
|
29. |
Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med, 2007, 26(11): 2389-2430.
|
30. |
Steyerberg EW, Eijkemans MJ, Habbema JD. Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis. J Clin Epidemiol, 1999, 52(10): 935-942.
|
31. |
Van Calster B, van Smeden M, De Cock B, et al. Regression shrinkage methods for clinical prediction models do not guarantee improved performance: simulation study. Stat Methods Med Res, 2020, 29(11): 3166-3178.
|
32. |
Riley RD, Snell KIE, Martin GP, et al. Penalization and shrinkage methods produced unreliable clinical prediction models especially when sample size was small. J Clin Epidemiol, 2021, 132: 88-96.
|
33. |
Wood AM, Royston P, White IR. The estimation and use of predictions for the assessment of model performance using large samples with multiply imputed data. Biom J, 2015, 57(4): 614-632.
|
34. |
Steyerberg EW. Validation in prediction research: the waste by data splitting. J Clin Epidemiol, 2018, 103: 131-133.
|
35. |
Collins GS, Dhiman P, Ma J, et al. Evaluation of clinical prediction models (part 1): from development to external validation. BMJ, 2024, 384: e074819.
|
36. |
Lynam AL, Dennis JM, Owen KR, et al. Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults. Diagn Progn Res, 2020, 4: 6.
|
37. |
National Institute for Health and Care Excellence: Guidelines. Cardiovascular disease: risk assessment and reduction, including lipid modification. 2023.
|
38. |
Vickers AJ, Cronin AM, Elkin EB, et al. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak, 2008, 8: 53.
|
39. |
Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res, 2019, 3: 18.
|
40. |
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ, 2016, 352: i6.
|
41. |
Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making, 2006, 26(6): 565-574.
|
42. |
Pearl J. An introduction to causal inference. Int J Biostat, 2010, 6(2): Article 7.
|
43. |
Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration. BMJ, 2023, 380: e071058.
|
44. |
李秋萍, 谷鸿秋, 王俊峰. 临床预测模型: TRIPOD报告规范解读—以心血管疾病预测模型QRISK3为例(上). 中国循证心血管医学杂志, 2020, 12(7): 778-782,793.
|
45. |
Reeve K, On BI, Havla J, et al. Prognostic models for predicting clinical disease progression, worsening and activity in people with multiple sclerosis. Cochrane Database Syst Rev, 2023, (9): CD013606.
|
46. |
Bonnett LJ, Snell KIE, Collins GS, et al. Guide to presenting clinical prediction models for use in clinical settings. BMJ, 2019, 365: l737.
|
47. |
Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 2024, 385: e078378.
|
48. |
Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J, 2014, 35(29): 1925-1931.
|
49. |
陈静静, 卿婷玉, 周波. 基于R语言ARIMA模型对我国医疗卫生资源预测研究. 社区医学杂志, 2022, 20(2): 108-115.
|
50. |
谷鸿秋. 临床预测模型的困境与机遇. 中国卒中杂志, 2024, 19(5): 481-487.
|
51. |
医疗大数据白皮书. 2023.
|