罗程,
Email: chengluo@uestc.edu.cn
特发性全面发作性癫痫(Idiopathic generalized epilepsy, IGE)是一类没有明显病因和大脑病灶的癫痫, 主要脑电图(EEG)表现为突出背景的双侧对称的癫痫放电。现在新兴的无创的神经成像技术改变了以前对IGE的脑结构和功能网络的研究模式。当前的研究者已经迅速地采用这些新技术研究IGE的脑特征性改变, 包括EEG、功能磁共振、同步脑电和功能磁共振、结构磁共振、弥散张量成像以及结构功能脑网络技术。这些发现表明IGE中皮层-丘脑网络中存在着结构和功能指标的异常, 且越来越多的多模态神经成像结果也评估了癫痫活动对大量脑功能网络的影响。将来的研究将集中在多学科的融合和发展多模态神经成像技术, 更深入地研究IGE的脑网络机制
Citation: 罗程, 尧德中. 特发性全面性癫痫的神经影像研究进展. Journal of Epilepsy, 2016, 2(1): 55-63. doi: 10.7507/2096-0247.20160011 Copy
1. | Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42 (6): 796-803. |
2. | Heather AL, Linda MP. Epilepsy: epidemiology, classification and natural history. Medicine, 2008, 36 (11): 571-578. |
3. | Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia, 1968, 9 (3): 249-263. |
4. | Prince DA, Farrell D. Centrencephalic spike-wave discharges following parenteral penicillin injection in the cat. Neurology, 1969, 19(6): 309-310. |
5. | Meeren HK, Pijn JP, EL Van Luijtelaar, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci, 2002, 22 (4): 1480-1495. |
6. | 尧德中.脑功能探测的电学理论与方法.北京:科学出版社. 2003, 357-398. |
7. | Engel J Jr. A practical guide for routine EEG studies in epilepsy. J Clin Neurophysiol, 1984, 1 (2): 109-142. |
8. | Noachtar S, Remi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav, 2009, 15 (1): 22-33. |
9. | Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas, 2001, 22 (4): 693-711. |
10. | Qin Y, Xu P, Yao D. A comparative study of different references for EEG default mode network: the use of the infinity reference. Clin Neurophysiol, 2010, 121 (12): 1981-1991. |
11. | Hong SJ, Kim H, Schrader D, et al. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology, 2014, 83 (1): 48-55. |
12. | Mueller SG, Laxer KD, Cashdollar N, et al. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia, 2006, 47 (5): 900-907. |
13. | Bernhardt BC, Rozen DA, Worsley KJ, et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage, 2009, 46 (2): 373-381. |
14. | Luo C, Zhang Y, Cao W, et al. Altered Structural and Functional Feature of Striato-Cortical Circuit In Benign Epilepsy with Centrotemporal Spikes. Int J Neural Syst, 2015, 32(7): 1550027. |
15. | Betting LE, Mory SB, Lopes-Cendes I, et al. MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures. Epilepsy Behav, 2006, 8 (3): 575-580. |
16. | Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J, 1994, 66 (1): 259-267. |
17. | Rugg-Gunn FJ, Eriksson SH, Symms MR, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain, 2001, 124 (3): 627. |
18. | Kimiwada T, Juhász C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia, 2006, 47 (1): 167-175. |
19. | Concha L, Gross DW, Beaulieu C. Diffusion tensor tractography of the limbic system. American Journal Neuroradiology, 2005, 26 (9): 2267-2274. |
20. | Powell HW, Parker GJ, Alexander DC, et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage, 2007, 36 (1): 209-221. |
21. | Chahboune H, Mishra AM, DeSalvo MN, et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. NeuroImage, 2009, 47 (2): 459-466. |
22. | Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87 (24): 9868-9872. |
23. | Lui S, Ouyang L, Chen Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J Magn Reson Imaging, 2008, 27 (6): 1214-1220. |
24. | Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology, 2003, 61 (5): 699-701. |
25. | Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol, 2010, 121 (8): 1153-1175. |
26. | 张志强, 卢光明, 钟元, 等.低频振幅算法功能磁共振成像对双侧海马硬化颞叶癫痫的研究.中华医学杂志, 2008, 88 (23): 1594-1598. |
27. | Wang P, Luo C, Dong L, et al. Altered intrinsic brain activity in patients with familial cortical myoclonic tremor and epilepsy: an amplitude of low-frequency fluctuation study. J Neurol Sci, 2015, 351 (1-2): 133-139. |
28. | Zhong Y, Lu G, Zhang Z, et al. Altered regional synchronization in epileptic patients with generalized tonic-clonic seizures. Epilepsy Res, 2011, 97 (1-2): 83-91. |
29. | Ding J, An D, Liao W, et al. Abnormal functional connectivity density in psychogenic non-epileptic seizures. Epilepsy Res, 2014, 108 (7): 1184-1194. |
30. | Dong L, Luo C, Cao W, et al. Spatiotemporal consistency of local neural activities: A new imaging measure for functional MRI data. J Magn Reson Imaging, 2015, 42 (3): 729-736. |
31. | Ives JR, Warach S, Schmitt F, et al. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol, 1993, 87 (6): 417-420. |
32. | Mantini D, Perrucci MG, Gratta C Del, et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA, 2007, 104 (32): 13170-13175. |
33. | Gotman J, Kobayashi E, Bagshaw AP, et al. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging, 2006, 23 (6): 906-920. |
34. | Luo C, Yao Z, Li Q, et al. Imaging foci of epileptic discharges from simultaneous EEG and fMRI using the canonical HRF. Epilepsy Res, 2010, 91 (2-3): 133-142. |
35. | Dong L, Zhang Y, Zhang R, et al. Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA). Neuroimage, 2015, 10(9): 388-401. |
36. | Lei X, Xu P, Luo C, et al. fMRI functional networks for EEG source imaging. Hum Brain Mapp, 2011, 32 (7): 1141-1160. |
37. | Lei X, Hu J, Yao D. Incorporating FMRI functional networks in EEG source imaging: a Bayesian model comparison approach. Brain Topogr, 2012, 25 (1): 27-38. |
38. | Lei X, Qiu C, Xu P, et al. A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. Neuroimage, 2010, 52 (3): 1123-1134. |
39. | Dong L, Gong D, Valdes-Sosa PA, et al. Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. Neuroimage, 2014, 99: 28-41. |
40. | Tyvaert L, Hawco C, Kobayashi E, et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain, 2008, 131 (Pt 8): 2042-2060. |
41. | Kobayashi E, Bagshaw AP, Benar CG, et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia, 2006, 47 (2): 343-354. |
42. | Aghakhani Y, Kobayashi E, Bagshaw AP, et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol, 2006, 117 (1): 177-191. |
43. | An D, Fahoum F, Hall J, et al. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia, 2013, 54 (12): 2184-2194. |
44. | Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA, 2005, 102 (42): 15236-15240. |
45. | Hamandi K, Salek-Haddadi A, Laufs H, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage, 2006, 31 (4): 1700-1710. |
46. | Hawco CS, Bagshaw AP, Lu Y, et al. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage, 2007, 35 (4): 1450-1458. |
47. | Moeller F, Siebner HR, Wolff S, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia, 2008, 49 (9): 1510-1519. |
48. | Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res, 2009, 87 (2-3): 160-168. |
49. | 尧德中, 罗程, 雷旭, 等.脑成像与脑连接.中国生物医学工程学报, 2011, 30 (1): 6-10. |
50. | Friston KJ. Models of brain function in neuroimaging. Annu Rev Psychol, 2005, 56 (9): 57-87. |
51. | Biswal, B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance Medicine, 1995, 34 (4): 537-541. |
52. | Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8 (9): 700-711. |
53. | Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist, 2006, 12 (6): 512-523. |
54. | Salvador R, Suckling J, Coleman MR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex, 2005, 15 (9): 1332-1342. |
55. | Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52 (3): 1059-1069. |
56. | Gotman J. Epileptic networks studied with EEG-fMRI. Epilepsia, 2008, 49 (Suppl 3): 42-51. |
57. | Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Research, 2009, 87 (2-3): 160-168. |
58. | Banerjee PN, Filippi D, Hauser W Allen. The descriptive epidemiology of epilepsy-a review. Epilepsy Res, 2009, 85 (1): 31-45. |
59. | 杨飞, 罗程, 蒋思思, 等.青少年肌阵挛癫痫脑网络的研究进展.中华神经科杂志, 2015, 48 (7): 620-622. |
60. | Carney PW, Masterton RA, Harvey AS, et al. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology, 2010, 75 (10): 904-911. |
61. | Holmes MD, Quiring J, Tucker DM. Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage, 2010, 49 (1): 80-93. |
62. | Bettus G, Guedj E, Joyeux F, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp, 2009, 30 (5): 1580-1591. |
63. | Vaudano AE, Laufs H, Kiebel SJ, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One, 2009, 4 (8): e6475. |
64. | Deransart C, Vercueil L, Marescaux C, et al. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res, 1998, 32 (1-2): 213-223. |
65. | Luo C, Li Q, Xia Y, et al. Resting state basal ganglia network in idiopathic generalized epilepsy. Hum Brain Mapp, 2012, 33 (6): 1279-1294. |
66. | Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp, 2011, 32 (3): 438-449. |
67. | Yang T, Luo C, Li Q, et al. Altered resting-state connectivity during interictal generalized spike-wave discharges in drug-naive childhood absence epilepsy. Hum Brain Mapp, 2013, 34 (8): 1761-1767. |
68. | Tian Y, Dong B, Ma J, et al. Attention networks in children with idiopathic generalized epilepsy. Epilepsy Behav, 2010, 19 (3): 513-517. |
69. | Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp, 2010, 31 (12): 1851-1861. |
70. | Zhang Z, Lu G, Zhong Y, et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. Journal Neurology, 2009, 256 (10): 1705-1713. |
71. | Zhang Z, Lu G, Zhong Y, et al. Impaired attention network in temporal lobe epilepsy: A resting FMRI study. Neuroscience Letters, 2009, 458 (3): 97-101. |
72. | Luo C, Qiu C, Guo Z, et al. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One, 2012, 7 (1): e28196. |
73. | Li Q, Cao W, Liao X, et al. Altered resting state functional network connectivity in children absence epilepsy. J Neurol Sci, 2015, 354 (1-2): 79-85. |
74. | Liao W, Zhang Z, Pan Z, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 2010, 5 (1): e8525. |
75. | Zhang Z, Liao W, Chen H, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 2011, 134 (Pt 10): 2912-2928. |
76. | Brazdil M, Chlebus P, Mikl M, et al. Reorganization of language-related neuronal networks in patients with left temporal lobe epilepsy-an fMRI study. Eur J Neurol, 2005, 12 (4): 268-275. |
77. | Labudda K, Mertens M, Aengenendt J, et al. Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy. Epilepsy Res, 2010, 92 (2-3): 258-261. |
78. | You X, Guillen M, Bernal B, et al. fMRI activation pattern recognition: A novel application of PCA in language network of pediatric localization related epilepsy. Conf Proc IEEE Eng Med Biol Soc, 2009, 29(11): 5397-5400. |
79. | He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 2007, 17 (10): 2407-2419. |
80. | Sanabria-Diaz G, Melie-Garcia L, Iturria-Medina Y, et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage, 2010, 50 (4): 1497-1510. |
81. | Ciccarelli O, Parker G, Toosy A, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage, 2003, 18 (2): 348-359. |
82. | Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 2009, 19 (3): 524-536. |
83. | Yogarajah M, Duncan JS Diffusion-based magnetic resonance imaging and tractography in epilepsy. Epilepsia, 2008, 49 (2): 189-200. |
84. | Powell H, Richardson MP, Symms MR, et al. Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia, 2007, 48 (8): 1512-1525. |
85. | Adcock J, Wise R, Oxbury J, et al. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. NeuroImage, 2003, 18 (2): 423-438. |
86. | Thivard L, Hombrouck J, Tézenas du Montcel S, et al. Productive and perceptive language reorganization in temporal lobe epilepsy. NeuroImage, 2005, 24 (3): 841-851. |
87. | Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Annals Neurology, 2005, 57 (2): 188-196. |
88. | Kikuta K-i, Takagi Y, Nozaki K, et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery, 2006, 58 (2): 331-337. |
89. | Yu CS, Li KC, Xuan Y, et al. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. European Journal Radiology, 2005, 56 (2): 197-204. |
90. | Vaessen M, Jansen J, Hofman P, et al. Impaired small-world structural brain networks in chronic epilepsy. NeuroImage, 2009, 47(2): S113. |
91. | 薛开庆, 罗程, 杨天华, 等.儿童失神癫痫的默认模式网络的结构连接研究.生物化学与生理学进展, 2013, 40 (9): 826-833. |
92. | 薛开庆, 罗程, 田银, 等.基于弥散张量成像的儿童失神癫痫认知控制网络的结构连接研究.中国生物医学工程学报, 2013, 32 (4): 426-432. |
93. | Xue K, Luo C, Zhang D, et al. Diffusion tensor tractography reveals disrupted structural connectivity in childhood absence epilepsy. Epilepsy Res, 2014, 108 (1): 125-38. |
- 1. Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42 (6): 796-803.
- 2. Heather AL, Linda MP. Epilepsy: epidemiology, classification and natural history. Medicine, 2008, 36 (11): 571-578.
- 3. Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia, 1968, 9 (3): 249-263.
- 4. Prince DA, Farrell D. Centrencephalic spike-wave discharges following parenteral penicillin injection in the cat. Neurology, 1969, 19(6): 309-310.
- 5. Meeren HK, Pijn JP, EL Van Luijtelaar, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci, 2002, 22 (4): 1480-1495.
- 6. 尧德中.脑功能探测的电学理论与方法.北京:科学出版社. 2003, 357-398.
- 7. Engel J Jr. A practical guide for routine EEG studies in epilepsy. J Clin Neurophysiol, 1984, 1 (2): 109-142.
- 8. Noachtar S, Remi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav, 2009, 15 (1): 22-33.
- 9. Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas, 2001, 22 (4): 693-711.
- 10. Qin Y, Xu P, Yao D. A comparative study of different references for EEG default mode network: the use of the infinity reference. Clin Neurophysiol, 2010, 121 (12): 1981-1991.
- 11. Hong SJ, Kim H, Schrader D, et al. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology, 2014, 83 (1): 48-55.
- 12. Mueller SG, Laxer KD, Cashdollar N, et al. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia, 2006, 47 (5): 900-907.
- 13. Bernhardt BC, Rozen DA, Worsley KJ, et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage, 2009, 46 (2): 373-381.
- 14. Luo C, Zhang Y, Cao W, et al. Altered Structural and Functional Feature of Striato-Cortical Circuit In Benign Epilepsy with Centrotemporal Spikes. Int J Neural Syst, 2015, 32(7): 1550027.
- 15. Betting LE, Mory SB, Lopes-Cendes I, et al. MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures. Epilepsy Behav, 2006, 8 (3): 575-580.
- 16. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J, 1994, 66 (1): 259-267.
- 17. Rugg-Gunn FJ, Eriksson SH, Symms MR, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain, 2001, 124 (3): 627.
- 18. Kimiwada T, Juhász C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia, 2006, 47 (1): 167-175.
- 19. Concha L, Gross DW, Beaulieu C. Diffusion tensor tractography of the limbic system. American Journal Neuroradiology, 2005, 26 (9): 2267-2274.
- 20. Powell HW, Parker GJ, Alexander DC, et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage, 2007, 36 (1): 209-221.
- 21. Chahboune H, Mishra AM, DeSalvo MN, et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. NeuroImage, 2009, 47 (2): 459-466.
- 22. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87 (24): 9868-9872.
- 23. Lui S, Ouyang L, Chen Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J Magn Reson Imaging, 2008, 27 (6): 1214-1220.
- 24. Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology, 2003, 61 (5): 699-701.
- 25. Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol, 2010, 121 (8): 1153-1175.
- 26. 张志强, 卢光明, 钟元, 等.低频振幅算法功能磁共振成像对双侧海马硬化颞叶癫痫的研究.中华医学杂志, 2008, 88 (23): 1594-1598.
- 27. Wang P, Luo C, Dong L, et al. Altered intrinsic brain activity in patients with familial cortical myoclonic tremor and epilepsy: an amplitude of low-frequency fluctuation study. J Neurol Sci, 2015, 351 (1-2): 133-139.
- 28. Zhong Y, Lu G, Zhang Z, et al. Altered regional synchronization in epileptic patients with generalized tonic-clonic seizures. Epilepsy Res, 2011, 97 (1-2): 83-91.
- 29. Ding J, An D, Liao W, et al. Abnormal functional connectivity density in psychogenic non-epileptic seizures. Epilepsy Res, 2014, 108 (7): 1184-1194.
- 30. Dong L, Luo C, Cao W, et al. Spatiotemporal consistency of local neural activities: A new imaging measure for functional MRI data. J Magn Reson Imaging, 2015, 42 (3): 729-736.
- 31. Ives JR, Warach S, Schmitt F, et al. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol, 1993, 87 (6): 417-420.
- 32. Mantini D, Perrucci MG, Gratta C Del, et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA, 2007, 104 (32): 13170-13175.
- 33. Gotman J, Kobayashi E, Bagshaw AP, et al. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging, 2006, 23 (6): 906-920.
- 34. Luo C, Yao Z, Li Q, et al. Imaging foci of epileptic discharges from simultaneous EEG and fMRI using the canonical HRF. Epilepsy Res, 2010, 91 (2-3): 133-142.
- 35. Dong L, Zhang Y, Zhang R, et al. Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA). Neuroimage, 2015, 10(9): 388-401.
- 36. Lei X, Xu P, Luo C, et al. fMRI functional networks for EEG source imaging. Hum Brain Mapp, 2011, 32 (7): 1141-1160.
- 37. Lei X, Hu J, Yao D. Incorporating FMRI functional networks in EEG source imaging: a Bayesian model comparison approach. Brain Topogr, 2012, 25 (1): 27-38.
- 38. Lei X, Qiu C, Xu P, et al. A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. Neuroimage, 2010, 52 (3): 1123-1134.
- 39. Dong L, Gong D, Valdes-Sosa PA, et al. Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. Neuroimage, 2014, 99: 28-41.
- 40. Tyvaert L, Hawco C, Kobayashi E, et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain, 2008, 131 (Pt 8): 2042-2060.
- 41. Kobayashi E, Bagshaw AP, Benar CG, et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia, 2006, 47 (2): 343-354.
- 42. Aghakhani Y, Kobayashi E, Bagshaw AP, et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol, 2006, 117 (1): 177-191.
- 43. An D, Fahoum F, Hall J, et al. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia, 2013, 54 (12): 2184-2194.
- 44. Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA, 2005, 102 (42): 15236-15240.
- 45. Hamandi K, Salek-Haddadi A, Laufs H, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage, 2006, 31 (4): 1700-1710.
- 46. Hawco CS, Bagshaw AP, Lu Y, et al. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage, 2007, 35 (4): 1450-1458.
- 47. Moeller F, Siebner HR, Wolff S, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia, 2008, 49 (9): 1510-1519.
- 48. Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res, 2009, 87 (2-3): 160-168.
- 49. 尧德中, 罗程, 雷旭, 等.脑成像与脑连接.中国生物医学工程学报, 2011, 30 (1): 6-10.
- 50. Friston KJ. Models of brain function in neuroimaging. Annu Rev Psychol, 2005, 56 (9): 57-87.
- 51. Biswal, B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance Medicine, 1995, 34 (4): 537-541.
- 52. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8 (9): 700-711.
- 53. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist, 2006, 12 (6): 512-523.
- 54. Salvador R, Suckling J, Coleman MR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex, 2005, 15 (9): 1332-1342.
- 55. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52 (3): 1059-1069.
- 56. Gotman J. Epileptic networks studied with EEG-fMRI. Epilepsia, 2008, 49 (Suppl 3): 42-51.
- 57. Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Research, 2009, 87 (2-3): 160-168.
- 58. Banerjee PN, Filippi D, Hauser W Allen. The descriptive epidemiology of epilepsy-a review. Epilepsy Res, 2009, 85 (1): 31-45.
- 59. 杨飞, 罗程, 蒋思思, 等.青少年肌阵挛癫痫脑网络的研究进展.中华神经科杂志, 2015, 48 (7): 620-622.
- 60. Carney PW, Masterton RA, Harvey AS, et al. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology, 2010, 75 (10): 904-911.
- 61. Holmes MD, Quiring J, Tucker DM. Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage, 2010, 49 (1): 80-93.
- 62. Bettus G, Guedj E, Joyeux F, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp, 2009, 30 (5): 1580-1591.
- 63. Vaudano AE, Laufs H, Kiebel SJ, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One, 2009, 4 (8): e6475.
- 64. Deransart C, Vercueil L, Marescaux C, et al. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res, 1998, 32 (1-2): 213-223.
- 65. Luo C, Li Q, Xia Y, et al. Resting state basal ganglia network in idiopathic generalized epilepsy. Hum Brain Mapp, 2012, 33 (6): 1279-1294.
- 66. Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp, 2011, 32 (3): 438-449.
- 67. Yang T, Luo C, Li Q, et al. Altered resting-state connectivity during interictal generalized spike-wave discharges in drug-naive childhood absence epilepsy. Hum Brain Mapp, 2013, 34 (8): 1761-1767.
- 68. Tian Y, Dong B, Ma J, et al. Attention networks in children with idiopathic generalized epilepsy. Epilepsy Behav, 2010, 19 (3): 513-517.
- 69. Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp, 2010, 31 (12): 1851-1861.
- 70. Zhang Z, Lu G, Zhong Y, et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. Journal Neurology, 2009, 256 (10): 1705-1713.
- 71. Zhang Z, Lu G, Zhong Y, et al. Impaired attention network in temporal lobe epilepsy: A resting FMRI study. Neuroscience Letters, 2009, 458 (3): 97-101.
- 72. Luo C, Qiu C, Guo Z, et al. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One, 2012, 7 (1): e28196.
- 73. Li Q, Cao W, Liao X, et al. Altered resting state functional network connectivity in children absence epilepsy. J Neurol Sci, 2015, 354 (1-2): 79-85.
- 74. Liao W, Zhang Z, Pan Z, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 2010, 5 (1): e8525.
- 75. Zhang Z, Liao W, Chen H, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 2011, 134 (Pt 10): 2912-2928.
- 76. Brazdil M, Chlebus P, Mikl M, et al. Reorganization of language-related neuronal networks in patients with left temporal lobe epilepsy-an fMRI study. Eur J Neurol, 2005, 12 (4): 268-275.
- 77. Labudda K, Mertens M, Aengenendt J, et al. Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy. Epilepsy Res, 2010, 92 (2-3): 258-261.
- 78. You X, Guillen M, Bernal B, et al. fMRI activation pattern recognition: A novel application of PCA in language network of pediatric localization related epilepsy. Conf Proc IEEE Eng Med Biol Soc, 2009, 29(11): 5397-5400.
- 79. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 2007, 17 (10): 2407-2419.
- 80. Sanabria-Diaz G, Melie-Garcia L, Iturria-Medina Y, et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage, 2010, 50 (4): 1497-1510.
- 81. Ciccarelli O, Parker G, Toosy A, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage, 2003, 18 (2): 348-359.
- 82. Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 2009, 19 (3): 524-536.
- 83. Yogarajah M, Duncan JS Diffusion-based magnetic resonance imaging and tractography in epilepsy. Epilepsia, 2008, 49 (2): 189-200.
- 84. Powell H, Richardson MP, Symms MR, et al. Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia, 2007, 48 (8): 1512-1525.
- 85. Adcock J, Wise R, Oxbury J, et al. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. NeuroImage, 2003, 18 (2): 423-438.
- 86. Thivard L, Hombrouck J, Tézenas du Montcel S, et al. Productive and perceptive language reorganization in temporal lobe epilepsy. NeuroImage, 2005, 24 (3): 841-851.
- 87. Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Annals Neurology, 2005, 57 (2): 188-196.
- 88. Kikuta K-i, Takagi Y, Nozaki K, et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery, 2006, 58 (2): 331-337.
- 89. Yu CS, Li KC, Xuan Y, et al. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. European Journal Radiology, 2005, 56 (2): 197-204.
- 90. Vaessen M, Jansen J, Hofman P, et al. Impaired small-world structural brain networks in chronic epilepsy. NeuroImage, 2009, 47(2): S113.
- 91. 薛开庆, 罗程, 杨天华, 等.儿童失神癫痫的默认模式网络的结构连接研究.生物化学与生理学进展, 2013, 40 (9): 826-833.
- 92. 薛开庆, 罗程, 田银, 等.基于弥散张量成像的儿童失神癫痫认知控制网络的结构连接研究.中国生物医学工程学报, 2013, 32 (4): 426-432.
- 93. Xue K, Luo C, Zhang D, et al. Diffusion tensor tractography reveals disrupted structural connectivity in childhood absence epilepsy. Epilepsy Res, 2014, 108 (1): 125-38.
-
Previous Article
电刺激癫痫动物模型的研究进展 -
Next Article
海马硬化与癫痫