1. |
Hirtz D, Thurman DJ, Gwinn-Hardy K, et al. How common are the "common" neurologic disorders. Neurology, 2007, 68(5): 326-337.
|
2. |
Chang C, Lu T, Cheng T. Trends in reporting injury as a cause of death among people with epilepsy in the US, 1981-2010. Seizure, 2014, 23(10): 836-843.
|
3. |
Delamont RS, Walker MC. Pre-ictal autonomic changes. Epilepsy Research, 2011, 97(3): 267-272.
|
4. |
Baumgartner C, Lurger S, Leutmezer F. Autonomic symptoms during epileptic seizures. Epileptic Disorders, 2001, 3(3): 103.
|
5. |
Sevcencu C, Struijk JJ. Autonomic alterations and cardiac changes in epilepsy. Epilepsia, 2010, 51(5): 725-737.
|
6. |
Oppenheimer SM. Cardiovascular effects of human insular stimulation. Neurology, 1992, 42(7): 1727-1732.
|
7. |
Marins FR, Limborco-Filho M, Xavier CH, et al. Functional topography of cardiovascular regulation along the rostrocaudal axis of the rat posterior insular cortex. Clinical and Experimental Pharmacology and Physiology, 2016, 43(4): 484-493.
|
8. |
Oppenheimer SM, Cechetto DF, Hachinski VC. Cerebrogenic cardiac arrhythmias. Cerebral electrocardiographic influences and their role in sudden death. Archives of Neurology, 1990, 47(5): 513.
|
9. |
Stewart M, Kollmar R, Nakase K, et al. Obstructive apnea due to laryngospasm links ictal to postictal events in SUDEP cases and offers practical biomarkers for review of past cases and prevention of new ones. Epilepsia, 2017, 58(5): 13765.
|
10. |
Nedoboy PE, Mohammed S, Kapoor K, et al. pSer40 tyrosine hydroxylase immunohistochemistry identifies the anatomical location of C1 neurons in rat RVLM that are activated by hypotension. Neuroscience, 2016, 317(10): 162-172.
|
11. |
Bhandare AM, Kapoor K, Pilowsky PM, et al. Seizure-induced sympathoexcitation is caused by activation of glutamatergic receptors in RVLM that also causes proarrhythmogenic changes mediated by PACAP and microglia in rats. The Journal of Neuroscience: The Official Journal of the Society For Neuroscience, 2016, 36(2): 506.
|
12. |
Freedman RR, Woodward S, Mayes MM. Nonneural mediation of digital vasodilation during menopausal hot flushes. Gynecol Obstet Invest, 1994, 38(3): 206-209.
|
13. |
Murakawa Y, Inoue H, Nozaki A, et al. Role of sympathovagal interaction in diurnal variation of QT interval. Am J Cardiol, 1992, 69(4): 339-343.
|
14. |
Wallin BG, Eckberg DL. Sympathetic transients caused by abrupt alterations of carotid baroreceptor activity in humans. Am J Physiol, 1982, 242(2): H185-H190.
|
15. |
Imai K, Sato H, Hori M, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol, 1994, 24(6): 1529-1535.
|
16. |
Shahani BT, Day TJ, Cros D, et al. RR interval variation and the sympathetic skin response in the assessment of autonomic function in peripheral neuropathy. Arch Neurol, 1990, 47(6): 659-664.
|
17. |
Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res, 1986, 59(2): 178-193.
|
18. |
Kero P, Antila K, Ylitalo V, et al. Decreased heart rate variation in decerebration syndrome: quantitative clinical criterion of brain death. Pediatrics, 1978, 62(3): 307-311.
|
19. |
El-Rashidy OF, Shatla RH, Youssef OI, et al. Cardiac autonomic balance in children with epilepsy: value of Antiepileptic drugs. Pediatric Neurology, 2015, 52(4): 419-423.
|
20. |
Hart EC, Joyner MJ, Wallin BG, et al. Baroreflex control of muscle sympathetic nerve activity: a nonpharmacological measure of baroreflex sensitivity. Am J Physiol Heart Circ Physiol, 2010, 298(3): H816-H822.
|
21. |
Nederend I, Schutte NM, Bartels M, et al. Heritability of heart rate recovery and vagal rebound after exercise. Eur J Appl Physiol, 2016, 116(11-12): 2167-2176.
|
22. |
Anonymous. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 1996, 93(5): 1043-1065.
|
23. |
Kilinc O, Cincin A, Pehlivan A, et al. Assessment of time and frequency domain parameters of heart rate variability and interictal cardiac rhythm abnormalities in drug-naive patients with idiopathic generalized epilepsy. J Epilepsy Res, 2016, 6(1): 22-27.
|
24. |
Hoshi RA, Pastre CM, Vanderlei LCM, et al. Poincaré plot indexes of heart rate variability: relationships with other nonlinear variables. Autonomic Neuroscience, 2013, 177(2): 271-274.
|
25. |
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med, 2000, 342(5): 314-319.
|
26. |
Novak V, Reeves AL, Novak P, et al. Time-frequency mapping of R-R interval during complex partial seizures of temporal lobe origin. Journal of Autonomic Nervous System, 1999, 77(2-3): 195-202.
|
27. |
Behbahani S, Dabanloo NJ, Nasrabadi AM, et al. Preictal heart rate variability assessment of epileptic seizures by means of linear and non-linear analyses. Anadolu Kardiyol Derg, 2013, 13(8): 797-803.
|
28. |
Valenza G, Romigi A, Citi L, et al. Predicting seizures in untreated temporal lobe epilepsy using point-process nonlinear models of heartbeat dynamics. Conf Proc IEEE Eng Med Biol Soc, 2016, 20(2): 985-988.
|
29. |
Behbahani S, Dabanloo NJ, Nasrabadi AM, et al. Classification of ictal and seizure-free HRV signals with focus on lateralization of epilepsy. Technol Health Care, 2016, 24(1): 43-56.
|
30. |
Moridani MK, Farhadi H. Heart rate variability as a biomarker for epilepsy seizure prediction. Bratisl Lek Listy, 2017, 118(1): 3-8.
|
31. |
Fujiwara K, Miyajima M, Yamakawa T, et al. Epileptic seizure prediction based on multivariate statistical process control of heart rate variability features. IEEE Transactions on Biomeidcal Engineering, 2016, 63(6): 1321-1332.
|
32. |
Kolsal E, Serdaroglu A, Cilsal E, et al. Can heart rate variability in children with epilepsy be used to predict seizures. Seizure, 2014, 23(5): 357-362.
|
33. |
Gong X, Mao X, Chen Y, et al. The changes of HRV in refractory epilepsy: the potential index to predict the onset of epilepsy in children. J Xray Sci Technol, 2016, 24(2): 309-317.
|
34. |
Ha U, Lee Y, Kim H, et al. A Wearable EEG-HEG-HRV multimodal system with simultaneous monitoring of tES for mental health management. IEEE Trans Biomed Circuits Syst, 2015, 9(6): 758-766.
|
35. |
Greene BR, de Chazal P, Boylan G, et al. Heart and respiration rate changes in the neonate during electroencephalographic seizure. Med Biol Eng Comput, 2006, 44(1-2): 27-34.
|
36. |
Malarvili MB, Mesbah M. Newborn seizure detection based on heart rate variability. IEEE Trans Biomed Eng, 2009, 56(11): 2594-2603.
|
37. |
Jeppesen J, Beniczky S, Johansen P, et al. Using lorenz plot and cardiac sympathetic index of heart rate variability for detecting seizures for patients with epilepsy. Conference proceedings: Annual international conference of the IEEE Engineering in medicine and biology society.Annual Conference, 2014, 61(14): 4563.
|
38. |
Jeppesen J, Beniczky S, Johansen P, et al. Detection of epileptic seizures with a modified heart rate variability algorithm based on lorenz plot. Seizure, 2015, 24(5): 1-7.
|
39. |
Qaraqe M, Ismail M, Serpedin E, et al. Epileptic seizure onset detection based on EEG and ECG data fusion. Epilepsy Behav, 2016, 58(2): 48-60.
|
40. |
Shorvon S, Tomson T. Sudden unexpected death in epilepsy. LANCET, 2011, 378(9808): 2028-2038.
|
41. |
Nashef L. Sudden unexpected death in epilepsy: terminology and definitions. Epilepsia, 1997, 38(Suppl 1): 6-8.
|
42. |
Morse AM, Kothare SV. Pediatric sudden unexpected death in epilepsy. Pediatric Neurology, 2016, 57(2): 7-16.
|
43. |
Massey CA, Sowers LP, Dlouhy BJ, et al. Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nature Reviews Neurology, 2014, 10(5): 271-282.
|
44. |
Nayak CS, Sinha S, Nagappa M, et al. Lack of heart rate variability during sleep-related apnea in patients with temporal lobe epilepsy (TLE)-an indirect marker of SUDEP. Sleep Breath, 2017, 12(4): 215-216.
|
45. |
Vitelli O, Del PM, Baccari G, et al. Autonomic imbalance during apneic episodes in pediatric obstructive sleep apnea. Clin Neurophysiol, 2016, 127(1): 551-555.
|
46. |
Novak JL, Miller PR, Markovic D, et al. Risk assessment for sudden death in epilepsy: the SUDEP-7 inventory. Front Neurol, 2015, 6(7): 252.
|
47. |
Sivakumar SS, Namath AG, Tuxhorn IE, et al. Decreased heart rate and enhanced sinus arrhythmia during interictal sleep demonstrate autonomic imbalance in generalized epilepsy. J Neurophysiol, 2016, 115(4): 1988-1999.
|
48. |
Persson H, Ericson M, Tomson T. Carbamazepine affects autonomic cardiac control in patients with newly diagnosed epilepsy. Epilepsy Research, 2003, 57(1): 69-75.
|
49. |
Galli A, Lombardi F. Heart rate variability regression and risk of sudden unexpected death in epilepsy. Med Hypotheses, 2017, 99(4): 49-52.
|
50. |
Yuen AW, Sander JW. Can natural ways to stimulate the vagus nerve improve seizure control. Epilepsy Behav, 2017, 67(9): 105-110.
|