1. |
Liu L, van Groen T, Kadish I, et al. DNA methylation impacts on learning and memory in aging. Neurobiol Aging, 2009, 30(4): 549-560.
|
2. |
Hauser RM, Henshall DC, Lubin FD. The Epigenetics of epilepsy and its progression. Neuroscientist, 2018, 24(2): 186-200.
|
3. |
Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247-257.
|
4. |
Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat, 2016, 12: 2605-2616.
|
5. |
Levenson JM, Roth TL, Lubin FD, et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem, 2006, 281(23): 15763-15773.
|
6. |
Nelson ED, Kavalali ET, Monteggia LM. Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci, 2008, 28(2): 395-406.
|
7. |
Zhu Q, Wang L, Xiao Z, et al. Decreased expression of Ras-GRF1 in the brain tissue of the intractable epilepsy patients and experimental rats. Brain Res, 2013, 1493: 99-109.
|
8. |
Parrish RR, Albertson AJ, Buckingham SC, et al. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor grin2b DNA methylation levels in the hippocampus. Neuroscience, 2013, 248: 602-619.
|
9. |
Chen X, Peng X, Wang L, et al. Association of RASgrf1 methylation with epileptic seizures. Oncotarget, 2017, 8(28): 46286-46297.
|
10. |
Miller-Delaney SF, Das S, Sano T, et al. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci, 2012, 32(5): 1577-1588.
|
11. |
Kobow K, Kaspi A, Harikrishnan KN, et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol, 2013, 126(5): 741-756.
|
12. |
Miller-Delaney SF, Bryan K, Das S, et al. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain, 2015, 138(Pt 3): 616-631.
|
13. |
Debski KJ, Debski KJ, Pitkanen A, Puhakka N, et al. Etiology matters - genomic DNA methylation patterns in three rat models of acquired epilepsy. Sci Rep, 2016, 6: 25668.
|
14. |
Tinnes S, Schafer MK, Flubacher A, et al. Epileptiform activity interferes with proteolytic processing of Reelin required for dentate granule cell positioning. FASEB J, 2011, 25(3): 1002-1013.
|
15. |
Muller MC, Osswald M, Tinnes S, et al. Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol, 2009, 216(2): 390-397.
|
16. |
Kobow K, Jeske I, Hidebrandt M, et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol, 2009, 68(4): 356-364.
|
17. |
Guo F, Yu N, Cai JQ, et al. Voltage-gated sodium channel Nav1.1, Nav1.3 and beta1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat. Brain Res Bull, 2008, 75(1): 179-187.
|
18. |
Yu S, Li S, Shu H, et al. Upregulated expression of voltage-gated sodium channel Nav1.3 in cortical lesions of patients with focal cortical dysplasia type IIb. Neuroreport, 2012, 23(7): 407-411.
|
19. |
Chen C, Westenbroik RE, Xu X, et al. Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci, 2004, 24(16): 4030-4042.
|
20. |
Li HJ, Wan RP, Tang LJ, et al. Alteration of Scn3a expression is mediated via CpG methylation and MBD2 in mouse hippocampus during postnatal development and seizure condition. Biochim Biophys Acta, 2015, 1849(1): 1-9.
|
21. |
Heinrich C, Lahteinen S, Suzuki F, et al. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol Dis, 2011, 42(1): 35-47.
|
22. |
Lähteinen S, Pitkanen A, Saarelainen T, et al. Decreased BDNF signalling in transgenic mice reduces epileptogenesis. Eur J Neurosci, 2002, 15(4): 721-734.
|
23. |
Parrish RR, Buckingham SC, Mascia KL, et al. Methionine increases BDNF DNA methylation and improves memory in epilepsy. Ann Clin Transl Neurol, 2015, 2(4): 401-416.
|
24. |
Parrish RR, Albertson AJ, Buckingham SC, et al. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience, 2013, 248: 602-619.
|
25. |
Machnes Z, Huang TC, Chang PK, et al. DNA methylation mediates persistent epileptiform activity in vitro and in vivo. PLoS One, 2013, 8(10): e76299.
|
26. |
Belhedi N, Perroud N, Karege F, et al. Increased CPA6 promoter methylation in focal epilepsy and in febrile seizures. Epilepsy Res, 2014, 108(1): 144-148.
|
27. |
Wang L, Fu X, Peng X, et al. DNA methylation profiling reveals correlation of differential methylation patterns with gene expression in human epilepsy. J Mol Neurosci, 2016, 59(1): 68-77.
|
28. |
Zybura-Broda K, Amborska R, Ambrozek-Latecka M, et al. Epigenetics of epileptogenesis-evoked upregulation of matrix metalloproteinase-9 in hippocampus. PLoS One, 2016, 11(8): e0159745.
|
29. |
Berger SL, Sassone-Corsi P. Metabolic signaling to chromatin. Cold Spring Harb Perspect Biol, 2016, 8(11). pii: a019463.
|
30. |
Cloix JF, Hevor T. Epilepsy, regulation of brain energy metabolism and neurotransmission. Curr Med Chem, 2009, 16(7): 841-853.
|
31. |
Williams-Karnesky RL, Sandau US, Lusardi TA, et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest, 2013, 123(8): 3552-3563.
|
32. |
Dhediya RM, Joshi SS, Gajbhiye SV, et al. Evaluation of antiepileptic effect of S-adenosyl methionine and its role in memory impairment in pentylenetetrazole-induced kindling model in rats. Epilepsy Behav, 2016, 61: 153-157.
|
33. |
Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci, 2003, 26(3): 137-146.
|