翁柠,
Email: 16138649@qq.com
癫痫是一种病因复杂且发病机制尚未明确的慢性神经系统疾病。目前,国内外对癫痫开展了大量的研究。其中有研究认为,癫痫发生后,大脑海马区出现了一些结构性的改变,这些改变就包括细胞程序化死亡。细胞程序化死亡的方式主要有四种,分别是细胞自噬、细胞凋亡、程序性坏死和细胞焦亡,这四种死亡方式有着各自的特点和相应的机制。文章就细胞程序化死亡在癫痫发生过程中的相关机制作一综述,探讨癫痫发生分别与细胞自噬、细胞凋亡、程序性坏死和细胞焦亡的关系。
Citation: 高振, 翁柠. 细胞程序化死亡在癫痫发生过程中的机制研究. Journal of Epilepsy, 2021, 7(2): 152-158. doi: 10.7507/2096-0247.20210026 Copy
Copyright © the editorial department of Journal of Epilepsy of West China Medical Publisher. All rights reserved
1. | Bell GS, Neligan A, Sander JW. Commentary: epilepsia's survey on the prevalence of epilepsy. Epilepsia, 2015, 56(2): 166. |
2. | 唐颖莹, 陆璐, 周东. 中国癫痫诊断治疗现状. 癫痫杂志, 2019, 5(3): 161-164. |
3. | Gan J, Qu Y, Li J, et al. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci, 2015, 26(2): 225-237. |
4. | Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol, 2018, 15: 490-503. |
5. | Wang LX, Huang HH, Cai HC, et al. Maternal hypoxia increases hippocampal cell susceptibility to ischemia after middle cerebral artery occlusion in rat offspring. Folia Neuropathol, 2017, 55(4): 317-324. |
6. | Mao XY, Jin MZ, Chen JF, et al. Live or let die: Neuroprotective and anti-cancer effects of nutraceutical antioxidants. Pharmacol Ther, 2018, 183: 137-151. |
7. | Dingledine R, Varvel NH, Dudek FE. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol, 2014, 813: 109-122. |
8. | Lopes MW, Lopes SC, Costa AP, et al. Region-specific alterations of AMPA receptor phosphorylation and signaling pathways in the pilocarpine model of epilepsy. Neurochem Int, 2015, 87: 22-33. |
9. | Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 2015, 22(1): 58-73. |
10. | Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ, 2018, 25(3): 486-541. |
11. | 王栋梁, 宋海栋, 许可, 等. 新型抗癫痫药物临床应用研究. 中国医学科学院学报, 2019, 41(4): 566-571. |
12. | Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol, 2017, 8: 301. |
13. | Levira F, Thurman DJ, Sander JW, et al. Premature mortality of epilepsy in low- and middle-income countries: a systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia, 2017, 58(1): 6-16. |
14. | Zaccara G, Giannasi G, Oggioni R, et al. Convulsive status epilepticus study group of the uslcentro Toscana, Italy Challenges in the treatment of convulsive status epilepticus. Seizure, 2017, 47: 17-24. |
15. | Gavvala JR, Schuele SU. JAMA patient page: Epilepsy. JAMA, 2016, 316(24): 2686. |
16. | Wang J, Liu Y, Li XH, et al. Curcumin protects neuronal cells against status- epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis. Can J Physio Pharmacol, 2017, 95(5): 501-509. |
17. | 曹静, 樊永平. 癫痫的中医药治疗研究进展. 中华中医药杂志, 2008, 21(3): 181. |
18. | Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol, 2016, 82(5): 1245-1266. |
19. | Maiese K. SIRT1 and stem cells: in the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells, 2015, 7(2): 235-242. |
20. | Maiese K. Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Curr Neurovasc Res, 2015, 12(2): 173-188. |
21. | Zhang X, Cui SS, Wallace AE, et al. Relations between brain pathology and temporal lobe epilepsy. J Neurosci, 2002, 22(14): 6052-6061. |
22. | Onorati AV, Dyczynski M, Ojha R, et al. Targeting autophagy in cancer. Cancer, 2018, 124(16): 3307-3318. |
23. | Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int J Mol Med, 2015, 35(3): 684-692. |
24. | Antonioli M, Di RM, Piacentini M, et al. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci, 2017, 42(1): 28-41. |
25. | Rocha-Ferreira E, Hristova M. Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plast, 2016, 2016: 4901014. |
26. | 宋园远, 姜晓峰, 梁红艳. 细胞自噬在肿瘤治疗中的研究进展. 医学综述, 2019, 25(24): 4887-4891. |
27. | Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274-293. |
28. | Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 2015, 125(1): 25-32. |
29. | Huang F, Wang BR, Wang YG. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol, 2018, 24(41): 4643-4651. |
30. | Wu S, He YJ, Qiu XX, et al. Targeting the potent Beclin 1-UVRAG coiled-coil interaction with designed peptides enhances autophagy and endolysosomal trafficking. Proc Natl Acad Sci U S A, 2018, 115(25): E5669-E5678. |
31. | Han TY, Guo M, Gan MX, et al. TRIM59 regulates autophagy through modulating both the transcription and the ubiquitination of BECN1. Autophagy, 2018, 14(12): 2035-2048. |
32. | 杨炳钦, 陈君敏, 曾志勇. 调节自噬治疗多发性骨髓瘤的研究进展. 中国实验血液学杂志, 2020, 28(2): 700-703. |
33. | 金首跃, 武强. 细胞自噬、mTOR 信号通路在癫痫研究中的进展. 临床神经病学杂志, 2015, 28(3): 232-234. |
34. | Tiessen I, Abildgaard MH, Lubas M, et al. A high-throughput screen identifies the long non-coding RNA DRAIC as a regulator of autophagy. Oncogene, 2019, 38(26): 5127-5141. |
35. | Xu XB, Lai YY, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep, 2019, 39(1): BSR20180992. |
36. | Ichikawa N, Alves M, Pfeiffer S, et al. Deletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice. Cell Death Dis, 2017, 8(1): e2556. |
37. | 方春凤, 狄朋桃, 吴洋. 中医药干预骨关节炎软骨细胞凋亡研究进展. 中华中医药学刊, 2015, 33(8): 1919-1921. |
38. | Liao Y, Yang F, Li X, et al. The impact of Caspase-8 on non-small cell lung cancer brain metastasis in II/III stage patient. Neoplasma, 2015: 13. |
39. | 杨涛, 费振海, 钟兴明. Caspase 家族与细胞凋亡的研究进展. 浙江医学, 2018, 40(18): 2083-2087+2091. |
40. | Lee HJ, Lee EK, Seo YE, et al. Roles of Bcl-2 and caspase-9 and -3 in CD30-induced human eosinophil apoptosis. J Microbiol Immunol Infect, 2017, 50(2): 145-152. |
41. | 刘春艳, 柴艺汇, 田兴中, 等. 天麻破壁粉、冻干粉对戊四唑诱导癫痫大鼠海马组织 Bcl-2、Bax、Caspase-3、GAT-1mRNA 及蛋白表达对比研究. 世界科学技术-中医药现代化, 2020, 22(1): 147-156. |
42. | 苏胜有. Caspase 家族与神经细胞凋亡的研究进展. 世界最新医学信息文摘, 2019, 19(80): 76-77. |
43. | 陈胜, 闵红叶, 周书琴, 等. 亚低温对脑缺血再灌注损伤大鼠神经细胞凋亡和 caspase-3 释放的影响. 同济大学学报, 2016, 37(6): 18-22+34. |
44. | 肖红梅, 吴逸, 张婷, 等. 微囊藻毒素-LR 对人正常食管上皮细胞凋亡及对 Caspase-3 和 Caspase-9 蛋白表达的影响. 癌变·畸变·突变, 2017, 29(6): 418-421+426. |
45. | 杨娜, 龙艺, 孙丽明. 程序性细胞坏死在疾病中的研究进展. 中国细胞生物学学报, 2019, 41(8): 1490-1505. |
46. | Seifert L, Miller G. Molecular pathways: the necrosome-A target for cancer therapy. Clin Cancer Res, 2017, 23(5): 1132-1136. |
47. | 张浩, 缪震元, 张万年, 等. 程序性细胞坏死抑制剂的研究进展. 中国药物化学杂志, 2019, 29(4): 305-316. |
48. | 吴轶群, 徐翀, 魏立彬. 细胞程序性坏死机制及其在神经退行性疾病发生发展中的作用. 世界最新医学信息文摘, 2019, 19(78): 52-54. |
49. | Zhang YY, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths. Cell Res, 2018, 28(1): 9-21. |
50. | Sai K, Parsons C, House JS, et al. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J Cell Biol, 2019, 218(6): 1994-2005. |
51. | Conrad M, Angeli JP, Vandenabeele P, et al. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 2016, 15(5): 348-366. |
52. | Ting AT, Bertrand MJM. More to life than NF-κB in TNFR1 signaling. Trends Immunol, 2016, 37(8): 535-545. |
53. | Messmer MN, Snyder AG, Oberst A. Comparing the effects of different cell death programs in tumor progression and immunotherapy. Cell Death Differ, 2019, 26(1): 115-129. |
54. | 龚捷, 徐晓飞. 细胞程序性坏死在恶性肿瘤中的研究进展. 巴楚医学, 2019, 2(3): 116-119. |
55. | 李丽莎, 李燕京, 白玉贤. Gasdermin 家族调控肿瘤细胞焦亡的研究进展. 中国肿瘤, 2020, 29(4): 285-291. |
56. | Ding JJ, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116. |
57. | Ruan J. Structural insight of gasdermin family driving pyroptotic cell death. Adv Exp Med Biol, 2019, 1172: 189-205. |
58. | Shi JJ, Gao WQ, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci, 2017, 42(4): 245-254. |
59. | Xia XJ, Wang X, Zheng Y, et al. What role does pyroptosis play in microbial infection? J Cell Physiol, 2019, 234(6): 7885-7892. |
60. | Yang J, Liu ZH, Wang CP, et al. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci U S A, 2018, 115(26): 6792-6797. |
61. | 曾琬琴, 殷霞, 傅小龙. 细胞焦亡在肿瘤中的研究进展. 肿瘤学杂志, 2020, 26(5): 438-443. |
62. | Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev, 2015, 265(1): 6-21. |
63. | Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell, 2016, 165(4): 792-800. |
64. | Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol, 2017, 27(9): 673-684. |
65. | Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev, 2017, 277(1): 61-75. |
66. | Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology, 2017, 152(2): 207-217. |
67. | 黄清宇, 杜楚江, 张雨竹, 等. 细胞焦亡研究进展. 中国免疫学杂志, 2020, 36(2): 245-250. |
68. | 李盼, 马莉. 细胞焦亡在脓毒症心功能障碍中的研究进展. 中国现代医药杂志, 2020, 22(2): 103-105. |
69. | 李洁, 李海霞, 阎春生, 等. 细胞焦亡与动脉粥样硬化相关性的研究进展. 中国生物制品学杂志, 2020, 33(2): 207-212. |
70. | Giorgi FS, Biagioni F, Lenzi P, et al. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm, 2015, 122(6): 849-862. |
71. | McMahon J, Huang XX, Yang J, et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci, 2012, 32(45): 15704-15714. |
72. | Yasin SA, Ali AM, Tata M, et al. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol, 2013, 126(2): 207-218. |
73. | Hosseinzadeh M, Nikseresht S, Khodagholi F, et al. Cannabidiol post-treatment alleviates rat epileptic-related behaviors and activates hippocampal cell autophagy pathway along with antioxidant defense in chronic phase of pilocarpine-induced seizure. J Mol Neurosci, 2016, 58(4): 432-440. |
74. | Zheng ZL, Wu YQ, Li ZM, et al. Valproic acid affects neuronal fate and microglial function via enhancing autophagic flux in mice after traumatic brain injury. J Neurochem, 2019, 154(3): 274-300. |
75. | Wu H, Lu MH, Wang W, et al. Lamotrigine reduces beta-site abetaPP-cleaving enzyme one protein levels through induction of autophagy. J Alzheimers Dis, 2015, 46(4): 863-876. |
76. | Fornai F, Longone P, Cafaro L, et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA, 2008, 105(6): 2052-2057. |
77. | Calderó J, Brunet N, Tarabal O, et al. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience, 2010, 165(4): 1353-1369. |
78. | Wu Q, Zhang M, Liu XY, et al. CB2R orchestrates neuronal autophagy through regulation of the mTOR signaling pathway in the hippocampus of developing rats with status epilepticus. Int J Mol Med, 2020, 45(2): 475-484. |
79. | Wang BH, Hou Q, Lu YQ, et al. Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res, 2018, 1678: 106-115. |
80. | Yuen ESM, Troconiz IF. Can pentylenetetrazole and maximal electroshock rodent seizure models quantitatively predict antiepileptic efficacy in humans? Seizure, 2015, 24: 21-27. |
81. | Zhu XJ, Shen K, Bai Y, et al. NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy. Free Radic Biol Med, 2016, 94: 230-242. |
82. | Hussein AM, Adel M, El-Mesery M, et al. l-carnitine modulates epileptic seizures in pentylenetetrazole-kindled rats via suppression of apoptosis and autophagy and upregulation of hsp70. Brain Sci, 2018, 8(3): 45. |
83. | Wang L, Song LF, Chen XY, et al. MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther, 2019, 25(1): 112-122. |
84. | 杜鹏, 木依提, 栾新平, 等. 外伤性癫痫模型海马中自噬变化动态研究. 新疆医学, 2013, 43(9): 7-10. |
85. | Koshal P, Kumar P. Effect of liraglutide on corneal kindling epilepsy induced depression and cognitive impairment in mice. Neurochem Res, 2016, 41(7): 1741-1750. |
86. | Koshal P, Kumar P. Neurochemical modulation involved in the beneficial effect of liraglutide, GLP-1 agonist on PTZ kindling epilepsy-induced comorbidities in mice. Mol Cell Biochem, 2016, 415(1-2): 77-87. |
87. | Hussein AM, Eldosoky M, El-Shafey M, et al. Effects of GLP-1 receptor activation on a pentylenetetrazole-kindling rat model. Brain Sci, 2019, 9(5): 108. |
88. | Cui Y, Liang Y, Liu YX, et al. High mobility group box 1 antibody represses autophagy and alleviates hippocampus damage in pilocarpine-induced mouse epilepsy model. Acta Histochem, 2020, 122(2): 151485. |
89. | Attia GM, Elmansy RA, Elsaed WM. Neuroprotective effect of nilotinib on pentylenetetrazol-induced epilepsy in adult rat hippocampus: involvement of oxidative stress, autophagy, inflammation, and apoptosis. Folia Neuropathol, 2019, 57(2): 146-160. |
90. | Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol, 2009, 1(2): 97-115. |
91. | 齐登斌, 郭振元, 闫波, 等. 依达拉奉对癫痫持续状态大鼠神经元凋亡及 XIAP、Caspase-3 表达的影响. 中外医疗, 2019, 38(3): 23-25. |
92. | Meng FX, You Y, Liu ZL, et al. Neuronal calcium signaling pathways are associated with the development of epilepsy. Mol Med Rep, 2015, 11(1): 196-202. |
93. | Mori M, Burgess DL, Gefrides LA, et al. Expression of apoptosis inhibitor protein Mcl1 linked to neuroprotection in CNS neurons. Cell Death Differ, 2004, 11(11): 1223-1233. |
94. | Murphy B, Dunleavy M, Shinoda S, et al. Bcl-w protects hippocampus during experimental status epilepticus. Am J Pathol, 2007, 171(4): 1258-1268. |
95. | Murphy BM, Engel T, Paucard A, et al. Contrasting patterns of Bim induction and neuroprotection in Bim-deficient mice between hippocampus and neocortex after status epilepticus. Cell Death Differ, 2010, 17(3): 459-468. |
96. | Engel T, Murphy BM, Hatazaki S, et al. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J, 2010, 24(3): 853-861. |
97. | Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev, 2017, 277(1): 76-89. |
98. | 刘春华, 刘捷. 神经元凋亡与 Caspase 家族及细胞周期研究进展. 人民军医, 2018, 61(7): 641-644. |
99. | 林若庭, 蔡若蔚, 张鹏飞, 等. 人难治性颞叶癫痫神经细胞凋亡与 Caspase3, 4 的表达. 中华医学杂志, 2016, 96(7): 522-525. |
100. | Gstrein T, Edwards A, Přistoupilová A, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci, 2018, 21(2): 207-217. |
101. | Nader MA, Ateyya H, El-Shafey M, et al. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem Int, 2018, 115: 11-23. |
102. | Yang XR, Zhang HM, Wu JZ, et al. Humanin attenuates NMDA-induced excitotoxicity by inhibiting ROS-dependent JNK/p38 MAPK pathway. Int J Mol Sci, 2018, 19(10): 2982. |
103. | Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 1997, 389(6653): 865-870. |
104. | Mao XY, Zhou HH, Jin WL. Redox-related neuronal death and crosstalk as drug targets: focus on epilepsy. Front Neurosci, 2019, 13: 512. |
105. | Zhang T, Balachandran S. Bayonets over bombs: RIPK3 and MLKL restrict Listeria without triggering necroptosis. J Cell Biol, 2019, 218(6): 1773-1775. |
106. | 杜瑞兵. 肿瘤细胞坏死因子 α 和 C 反应蛋白在大面积脑梗死性癫痫中的动态观察. 中国卫生标准管理, 2016, 7(3): 145-146. |
107. | Cai QY, Gan J, Luo R, et al. The role of necroptosis in status epilepticus-induced brain injury in juvenile rats. Epilepsy Behav, 2017, 75: 134-142. |
108. | Lin DQ, Cai XY, Wang CH, et al. Optimal concentration of necrostatin-1 for protecting against hippocampal neuronal damage in mice with status epilepticus. Neural Regen Res, 2020, 15(5): 936-943. |
109. | Moerke C, Jaco I, Dewitz C, et al. The anticonvulsive Phenhydan® suppresses extrinsic cell death. Cell Death Differ, 2019, 26(9): 1631-1645. |
110. | Zhang YY, Su SS, Zhao SB, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun, 2017, 8: 14329. |
111. | Wang J, Li Y, Huang WH, et al. The protective effect of aucubin from eucommia ulmoides against status epilepticus by inducing autophagy and inhibiting necroptosis. Am J Chin Med, 2017, 45(3): 557-573. |
112. | Maroso M, Balosso S, Ravizza T, et al. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med, 2011, 270(4): 319-326. |
113. | Tan CC, Zhang JG, Tan MS, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation, 2015, 12: 18. |
114. | Wu Q, Wang H. The spatiotemporal expression changes of CB2R in the hippocampus of rats following pilocarpine-induced status epilepticus. Epilepsy Res, 2018, 148: 8-16. |
115. | McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A, 2018, 115(26): E6065-E6074. |
116. | Li J, Hao JH, Yao D, et al. Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci Ther, 2020, 26(9): 925-939. |
117. | Bassil F, Fernagut PO, Bezard E, et al. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proc Natl Acad Sci U S A, 2016, 113(34): 9593-9598. |
- 1. Bell GS, Neligan A, Sander JW. Commentary: epilepsia's survey on the prevalence of epilepsy. Epilepsia, 2015, 56(2): 166.
- 2. 唐颖莹, 陆璐, 周东. 中国癫痫诊断治疗现状. 癫痫杂志, 2019, 5(3): 161-164.
- 3. Gan J, Qu Y, Li J, et al. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci, 2015, 26(2): 225-237.
- 4. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol, 2018, 15: 490-503.
- 5. Wang LX, Huang HH, Cai HC, et al. Maternal hypoxia increases hippocampal cell susceptibility to ischemia after middle cerebral artery occlusion in rat offspring. Folia Neuropathol, 2017, 55(4): 317-324.
- 6. Mao XY, Jin MZ, Chen JF, et al. Live or let die: Neuroprotective and anti-cancer effects of nutraceutical antioxidants. Pharmacol Ther, 2018, 183: 137-151.
- 7. Dingledine R, Varvel NH, Dudek FE. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol, 2014, 813: 109-122.
- 8. Lopes MW, Lopes SC, Costa AP, et al. Region-specific alterations of AMPA receptor phosphorylation and signaling pathways in the pilocarpine model of epilepsy. Neurochem Int, 2015, 87: 22-33.
- 9. Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 2015, 22(1): 58-73.
- 10. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ, 2018, 25(3): 486-541.
- 11. 王栋梁, 宋海栋, 许可, 等. 新型抗癫痫药物临床应用研究. 中国医学科学院学报, 2019, 41(4): 566-571.
- 12. Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol, 2017, 8: 301.
- 13. Levira F, Thurman DJ, Sander JW, et al. Premature mortality of epilepsy in low- and middle-income countries: a systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia, 2017, 58(1): 6-16.
- 14. Zaccara G, Giannasi G, Oggioni R, et al. Convulsive status epilepticus study group of the uslcentro Toscana, Italy Challenges in the treatment of convulsive status epilepticus. Seizure, 2017, 47: 17-24.
- 15. Gavvala JR, Schuele SU. JAMA patient page: Epilepsy. JAMA, 2016, 316(24): 2686.
- 16. Wang J, Liu Y, Li XH, et al. Curcumin protects neuronal cells against status- epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis. Can J Physio Pharmacol, 2017, 95(5): 501-509.
- 17. 曹静, 樊永平. 癫痫的中医药治疗研究进展. 中华中医药杂志, 2008, 21(3): 181.
- 18. Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol, 2016, 82(5): 1245-1266.
- 19. Maiese K. SIRT1 and stem cells: in the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells, 2015, 7(2): 235-242.
- 20. Maiese K. Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Curr Neurovasc Res, 2015, 12(2): 173-188.
- 21. Zhang X, Cui SS, Wallace AE, et al. Relations between brain pathology and temporal lobe epilepsy. J Neurosci, 2002, 22(14): 6052-6061.
- 22. Onorati AV, Dyczynski M, Ojha R, et al. Targeting autophagy in cancer. Cancer, 2018, 124(16): 3307-3318.
- 23. Zhao X, Liu G, Shen H, et al. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int J Mol Med, 2015, 35(3): 684-692.
- 24. Antonioli M, Di RM, Piacentini M, et al. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci, 2017, 42(1): 28-41.
- 25. Rocha-Ferreira E, Hristova M. Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plast, 2016, 2016: 4901014.
- 26. 宋园远, 姜晓峰, 梁红艳. 细胞自噬在肿瘤治疗中的研究进展. 医学综述, 2019, 25(24): 4887-4891.
- 27. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274-293.
- 28. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 2015, 125(1): 25-32.
- 29. Huang F, Wang BR, Wang YG. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol, 2018, 24(41): 4643-4651.
- 30. Wu S, He YJ, Qiu XX, et al. Targeting the potent Beclin 1-UVRAG coiled-coil interaction with designed peptides enhances autophagy and endolysosomal trafficking. Proc Natl Acad Sci U S A, 2018, 115(25): E5669-E5678.
- 31. Han TY, Guo M, Gan MX, et al. TRIM59 regulates autophagy through modulating both the transcription and the ubiquitination of BECN1. Autophagy, 2018, 14(12): 2035-2048.
- 32. 杨炳钦, 陈君敏, 曾志勇. 调节自噬治疗多发性骨髓瘤的研究进展. 中国实验血液学杂志, 2020, 28(2): 700-703.
- 33. 金首跃, 武强. 细胞自噬、mTOR 信号通路在癫痫研究中的进展. 临床神经病学杂志, 2015, 28(3): 232-234.
- 34. Tiessen I, Abildgaard MH, Lubas M, et al. A high-throughput screen identifies the long non-coding RNA DRAIC as a regulator of autophagy. Oncogene, 2019, 38(26): 5127-5141.
- 35. Xu XB, Lai YY, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep, 2019, 39(1): BSR20180992.
- 36. Ichikawa N, Alves M, Pfeiffer S, et al. Deletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice. Cell Death Dis, 2017, 8(1): e2556.
- 37. 方春凤, 狄朋桃, 吴洋. 中医药干预骨关节炎软骨细胞凋亡研究进展. 中华中医药学刊, 2015, 33(8): 1919-1921.
- 38. Liao Y, Yang F, Li X, et al. The impact of Caspase-8 on non-small cell lung cancer brain metastasis in II/III stage patient. Neoplasma, 2015: 13.
- 39. 杨涛, 费振海, 钟兴明. Caspase 家族与细胞凋亡的研究进展. 浙江医学, 2018, 40(18): 2083-2087+2091.
- 40. Lee HJ, Lee EK, Seo YE, et al. Roles of Bcl-2 and caspase-9 and -3 in CD30-induced human eosinophil apoptosis. J Microbiol Immunol Infect, 2017, 50(2): 145-152.
- 41. 刘春艳, 柴艺汇, 田兴中, 等. 天麻破壁粉、冻干粉对戊四唑诱导癫痫大鼠海马组织 Bcl-2、Bax、Caspase-3、GAT-1mRNA 及蛋白表达对比研究. 世界科学技术-中医药现代化, 2020, 22(1): 147-156.
- 42. 苏胜有. Caspase 家族与神经细胞凋亡的研究进展. 世界最新医学信息文摘, 2019, 19(80): 76-77.
- 43. 陈胜, 闵红叶, 周书琴, 等. 亚低温对脑缺血再灌注损伤大鼠神经细胞凋亡和 caspase-3 释放的影响. 同济大学学报, 2016, 37(6): 18-22+34.
- 44. 肖红梅, 吴逸, 张婷, 等. 微囊藻毒素-LR 对人正常食管上皮细胞凋亡及对 Caspase-3 和 Caspase-9 蛋白表达的影响. 癌变·畸变·突变, 2017, 29(6): 418-421+426.
- 45. 杨娜, 龙艺, 孙丽明. 程序性细胞坏死在疾病中的研究进展. 中国细胞生物学学报, 2019, 41(8): 1490-1505.
- 46. Seifert L, Miller G. Molecular pathways: the necrosome-A target for cancer therapy. Clin Cancer Res, 2017, 23(5): 1132-1136.
- 47. 张浩, 缪震元, 张万年, 等. 程序性细胞坏死抑制剂的研究进展. 中国药物化学杂志, 2019, 29(4): 305-316.
- 48. 吴轶群, 徐翀, 魏立彬. 细胞程序性坏死机制及其在神经退行性疾病发生发展中的作用. 世界最新医学信息文摘, 2019, 19(78): 52-54.
- 49. Zhang YY, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths. Cell Res, 2018, 28(1): 9-21.
- 50. Sai K, Parsons C, House JS, et al. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J Cell Biol, 2019, 218(6): 1994-2005.
- 51. Conrad M, Angeli JP, Vandenabeele P, et al. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 2016, 15(5): 348-366.
- 52. Ting AT, Bertrand MJM. More to life than NF-κB in TNFR1 signaling. Trends Immunol, 2016, 37(8): 535-545.
- 53. Messmer MN, Snyder AG, Oberst A. Comparing the effects of different cell death programs in tumor progression and immunotherapy. Cell Death Differ, 2019, 26(1): 115-129.
- 54. 龚捷, 徐晓飞. 细胞程序性坏死在恶性肿瘤中的研究进展. 巴楚医学, 2019, 2(3): 116-119.
- 55. 李丽莎, 李燕京, 白玉贤. Gasdermin 家族调控肿瘤细胞焦亡的研究进展. 中国肿瘤, 2020, 29(4): 285-291.
- 56. Ding JJ, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116.
- 57. Ruan J. Structural insight of gasdermin family driving pyroptotic cell death. Adv Exp Med Biol, 2019, 1172: 189-205.
- 58. Shi JJ, Gao WQ, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci, 2017, 42(4): 245-254.
- 59. Xia XJ, Wang X, Zheng Y, et al. What role does pyroptosis play in microbial infection? J Cell Physiol, 2019, 234(6): 7885-7892.
- 60. Yang J, Liu ZH, Wang CP, et al. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci U S A, 2018, 115(26): 6792-6797.
- 61. 曾琬琴, 殷霞, 傅小龙. 细胞焦亡在肿瘤中的研究进展. 肿瘤学杂志, 2020, 26(5): 438-443.
- 62. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev, 2015, 265(1): 6-21.
- 63. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell, 2016, 165(4): 792-800.
- 64. Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol, 2017, 27(9): 673-684.
- 65. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev, 2017, 277(1): 61-75.
- 66. Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology, 2017, 152(2): 207-217.
- 67. 黄清宇, 杜楚江, 张雨竹, 等. 细胞焦亡研究进展. 中国免疫学杂志, 2020, 36(2): 245-250.
- 68. 李盼, 马莉. 细胞焦亡在脓毒症心功能障碍中的研究进展. 中国现代医药杂志, 2020, 22(2): 103-105.
- 69. 李洁, 李海霞, 阎春生, 等. 细胞焦亡与动脉粥样硬化相关性的研究进展. 中国生物制品学杂志, 2020, 33(2): 207-212.
- 70. Giorgi FS, Biagioni F, Lenzi P, et al. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm, 2015, 122(6): 849-862.
- 71. McMahon J, Huang XX, Yang J, et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci, 2012, 32(45): 15704-15714.
- 72. Yasin SA, Ali AM, Tata M, et al. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol, 2013, 126(2): 207-218.
- 73. Hosseinzadeh M, Nikseresht S, Khodagholi F, et al. Cannabidiol post-treatment alleviates rat epileptic-related behaviors and activates hippocampal cell autophagy pathway along with antioxidant defense in chronic phase of pilocarpine-induced seizure. J Mol Neurosci, 2016, 58(4): 432-440.
- 74. Zheng ZL, Wu YQ, Li ZM, et al. Valproic acid affects neuronal fate and microglial function via enhancing autophagic flux in mice after traumatic brain injury. J Neurochem, 2019, 154(3): 274-300.
- 75. Wu H, Lu MH, Wang W, et al. Lamotrigine reduces beta-site abetaPP-cleaving enzyme one protein levels through induction of autophagy. J Alzheimers Dis, 2015, 46(4): 863-876.
- 76. Fornai F, Longone P, Cafaro L, et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA, 2008, 105(6): 2052-2057.
- 77. Calderó J, Brunet N, Tarabal O, et al. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience, 2010, 165(4): 1353-1369.
- 78. Wu Q, Zhang M, Liu XY, et al. CB2R orchestrates neuronal autophagy through regulation of the mTOR signaling pathway in the hippocampus of developing rats with status epilepticus. Int J Mol Med, 2020, 45(2): 475-484.
- 79. Wang BH, Hou Q, Lu YQ, et al. Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res, 2018, 1678: 106-115.
- 80. Yuen ESM, Troconiz IF. Can pentylenetetrazole and maximal electroshock rodent seizure models quantitatively predict antiepileptic efficacy in humans? Seizure, 2015, 24: 21-27.
- 81. Zhu XJ, Shen K, Bai Y, et al. NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy. Free Radic Biol Med, 2016, 94: 230-242.
- 82. Hussein AM, Adel M, El-Mesery M, et al. l-carnitine modulates epileptic seizures in pentylenetetrazole-kindled rats via suppression of apoptosis and autophagy and upregulation of hsp70. Brain Sci, 2018, 8(3): 45.
- 83. Wang L, Song LF, Chen XY, et al. MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther, 2019, 25(1): 112-122.
- 84. 杜鹏, 木依提, 栾新平, 等. 外伤性癫痫模型海马中自噬变化动态研究. 新疆医学, 2013, 43(9): 7-10.
- 85. Koshal P, Kumar P. Effect of liraglutide on corneal kindling epilepsy induced depression and cognitive impairment in mice. Neurochem Res, 2016, 41(7): 1741-1750.
- 86. Koshal P, Kumar P. Neurochemical modulation involved in the beneficial effect of liraglutide, GLP-1 agonist on PTZ kindling epilepsy-induced comorbidities in mice. Mol Cell Biochem, 2016, 415(1-2): 77-87.
- 87. Hussein AM, Eldosoky M, El-Shafey M, et al. Effects of GLP-1 receptor activation on a pentylenetetrazole-kindling rat model. Brain Sci, 2019, 9(5): 108.
- 88. Cui Y, Liang Y, Liu YX, et al. High mobility group box 1 antibody represses autophagy and alleviates hippocampus damage in pilocarpine-induced mouse epilepsy model. Acta Histochem, 2020, 122(2): 151485.
- 89. Attia GM, Elmansy RA, Elsaed WM. Neuroprotective effect of nilotinib on pentylenetetrazol-induced epilepsy in adult rat hippocampus: involvement of oxidative stress, autophagy, inflammation, and apoptosis. Folia Neuropathol, 2019, 57(2): 146-160.
- 90. Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol, 2009, 1(2): 97-115.
- 91. 齐登斌, 郭振元, 闫波, 等. 依达拉奉对癫痫持续状态大鼠神经元凋亡及 XIAP、Caspase-3 表达的影响. 中外医疗, 2019, 38(3): 23-25.
- 92. Meng FX, You Y, Liu ZL, et al. Neuronal calcium signaling pathways are associated with the development of epilepsy. Mol Med Rep, 2015, 11(1): 196-202.
- 93. Mori M, Burgess DL, Gefrides LA, et al. Expression of apoptosis inhibitor protein Mcl1 linked to neuroprotection in CNS neurons. Cell Death Differ, 2004, 11(11): 1223-1233.
- 94. Murphy B, Dunleavy M, Shinoda S, et al. Bcl-w protects hippocampus during experimental status epilepticus. Am J Pathol, 2007, 171(4): 1258-1268.
- 95. Murphy BM, Engel T, Paucard A, et al. Contrasting patterns of Bim induction and neuroprotection in Bim-deficient mice between hippocampus and neocortex after status epilepticus. Cell Death Differ, 2010, 17(3): 459-468.
- 96. Engel T, Murphy BM, Hatazaki S, et al. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J, 2010, 24(3): 853-861.
- 97. Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev, 2017, 277(1): 76-89.
- 98. 刘春华, 刘捷. 神经元凋亡与 Caspase 家族及细胞周期研究进展. 人民军医, 2018, 61(7): 641-644.
- 99. 林若庭, 蔡若蔚, 张鹏飞, 等. 人难治性颞叶癫痫神经细胞凋亡与 Caspase3, 4 的表达. 中华医学杂志, 2016, 96(7): 522-525.
- 100. Gstrein T, Edwards A, Přistoupilová A, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci, 2018, 21(2): 207-217.
- 101. Nader MA, Ateyya H, El-Shafey M, et al. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem Int, 2018, 115: 11-23.
- 102. Yang XR, Zhang HM, Wu JZ, et al. Humanin attenuates NMDA-induced excitotoxicity by inhibiting ROS-dependent JNK/p38 MAPK pathway. Int J Mol Sci, 2018, 19(10): 2982.
- 103. Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 1997, 389(6653): 865-870.
- 104. Mao XY, Zhou HH, Jin WL. Redox-related neuronal death and crosstalk as drug targets: focus on epilepsy. Front Neurosci, 2019, 13: 512.
- 105. Zhang T, Balachandran S. Bayonets over bombs: RIPK3 and MLKL restrict Listeria without triggering necroptosis. J Cell Biol, 2019, 218(6): 1773-1775.
- 106. 杜瑞兵. 肿瘤细胞坏死因子 α 和 C 反应蛋白在大面积脑梗死性癫痫中的动态观察. 中国卫生标准管理, 2016, 7(3): 145-146.
- 107. Cai QY, Gan J, Luo R, et al. The role of necroptosis in status epilepticus-induced brain injury in juvenile rats. Epilepsy Behav, 2017, 75: 134-142.
- 108. Lin DQ, Cai XY, Wang CH, et al. Optimal concentration of necrostatin-1 for protecting against hippocampal neuronal damage in mice with status epilepticus. Neural Regen Res, 2020, 15(5): 936-943.
- 109. Moerke C, Jaco I, Dewitz C, et al. The anticonvulsive Phenhydan® suppresses extrinsic cell death. Cell Death Differ, 2019, 26(9): 1631-1645.
- 110. Zhang YY, Su SS, Zhao SB, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun, 2017, 8: 14329.
- 111. Wang J, Li Y, Huang WH, et al. The protective effect of aucubin from eucommia ulmoides against status epilepticus by inducing autophagy and inhibiting necroptosis. Am J Chin Med, 2017, 45(3): 557-573.
- 112. Maroso M, Balosso S, Ravizza T, et al. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med, 2011, 270(4): 319-326.
- 113. Tan CC, Zhang JG, Tan MS, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation, 2015, 12: 18.
- 114. Wu Q, Wang H. The spatiotemporal expression changes of CB2R in the hippocampus of rats following pilocarpine-induced status epilepticus. Epilepsy Res, 2018, 148: 8-16.
- 115. McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A, 2018, 115(26): E6065-E6074.
- 116. Li J, Hao JH, Yao D, et al. Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci Ther, 2020, 26(9): 925-939.
- 117. Bassil F, Fernagut PO, Bezard E, et al. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proc Natl Acad Sci U S A, 2016, 113(34): 9593-9598.
-
Previous Article
拉考沙胺在老年癫痫患者中的应用进展 -
Next Article
肠道菌群与癫痫相关性研究进展