1. |
沈雁文, 邹丽萍. 从精准医疗的角度看药物难治性癫痫解放军医学院学报, 2019, 40(3): 282-285.
|
2. |
Sidhu MK, Duncan JS, Sander JW. Neuroimaging in epilepsy. Curr Opin Neurol, 2018, 31(4): 371-378.
|
3. |
Hu ZH, Yang WD, Liu HX, et al. From PET-CT to PET-MRI: advances in instrumentation and clinical applications. Mol Pharm, 2014, 11(11): 3798-3809.
|
4. |
刘鹏, 富丽萍. 一体化 PET/MR 技术研究进展. 中国医疗设备, 2019, 34(12): 160-164.
|
5. |
von Oertzen TJ. PET and ictal SPECT can be helpful for localizing epileptic foci. Curr Opin Neurol, 2018, 31(2): 184-191.
|
6. |
Chassoux F, Rodrigo S, Mellerio C, et al. Dysembryoplastic neuroepithelial tumors: an MRI-based scheme for epilepsy surgery. Neurology, 2012, 79(16): 1699-1707.
|
7. |
Guedj E, Bonini F, Gavaret M, et al. 18FDG-PET in different subtypes of temporal lobe epilepsy: SEEG validation and predictive value. Epilepsia, 2015, 56(3): 414-421.
|
8. |
Casse R, Rowe CC, Newton M, et al. Positron emission tomography and epilepsy. Mol Imaging Biol, 2002, 45(5): 338-351.
|
9. |
Ding Y, Zhu YK, Jiang B, et al. F-FDG PET and high-resolution MRI co-registration for pre-surgical evaluation of patients with conventional MRI-negative refractory extra-temporal lobe epilepsy. Eur J Nucl Med Mol Imaging, 2018, 45(9): 1567-1572.
|
10. |
Kojan M, Doležalová I, Koriťáková E, et al. Predictive value of preoperative statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Behav, 2018, 79(2): 46-52.
|
11. |
Chan TLH, Romsa J, Steven DA, et al. Refractory epilepsy: The role of positron emission tomography. Can J Neurol Sci, 2018, 45(1): 30-34.
|
12. |
Gokdemir S, Halac M, Albayram S, et al. Contribution of FDG-PET in epilepsy surgery: consistency and postoperative results compared with magnetic resonance imaging and electroencephalography. Turk Neurosurg, 2015, 25(1): 53-57.
|
13. |
Menon RN, Radhakrishnan A, Parameswaran R, et al. Does F-18 FDG-PET substantially alter the surgical decision-making in drug-resistant partial epilepsy? Epilepsy Behav, 2015, 51(10): 133-139.
|
14. |
Morales-Chacon LM, Alfredo Sanchez Catasus C, Minou Baez Martin M, et al. Multimodal imaging in nonlesional medically intractable focal epilepsy. Front Biosci (Elite Ed), 2015, 7(1): 42-57.
|
15. |
De Ciantis A, Barba C, Tassi L, et al. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia, 2016, 57(3): 445-454.
|
16. |
Jones AL, Cascino GD. Evidence on uUse of neuroimaging for surgical treatment of temporal lobe epilepsy: A systematic review. JAMA Neurol, 2016, 73(4): 464-470.
|
17. |
桑林, 张凯, 张建国, 等. PET-MRI 影像融合技术在药物难治性癫痫术前评估中的价值. 中华神经外科杂志, 2017, 33(6): 559-563.
|
18. |
Bisdas S, LáFougere C, Ernemann U. Hybrid MR-PET in neuroimaging. Clin Neuroradiol, 2015, 25(10): 275-281.
|
19. |
Shin HW, Jewells V, Sheikh A, et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure, 2015, 31(9): 1-4.
|
20. |
张淼, 黄鹏, 占世坤, 等. 一体化 18F-FDG PET-MRI 多模态分子影像在癫痫精准定位中的应用价值. 诊断学理论与实践, 2019, 18(3): 271-277.
|
21. |
张桂霞, 卢倩, 党浩丹, 等. PET-MRI 在儿童难治性癫痫定位诊断中的应用. 解放军医学院学报, 2018, 39(10): 833-837.
|
22. |
Paldino MJ, Yang E, Jones JY, et al. Comparison of the diagnostic accuracy of PET-MRI to PET-CT-acquired FDG brain exams for seizure focus detection: a prospective study. Pediatr Radiol, 2017, 47(11): 1500-1507.
|
23. |
Fernández S, Donaire A, Serès E, et al. PET-MRI and PET-MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res, 2015, 111(5): 1-9.
|
24. |
Wang X, Zhang C, Wang Y, et al. Prognostic factors for seizure outcome in patients with MRI-negative temporal lobe epilepsy: A meta-analysis and systematic review. Seizure, 2016, 38(5): 54-62.
|
25. |
Heiss WD. Hybrid PET/MR imaging in neurology: present applications and prospects for the future. J Nucl Med, 2016, 57(7): 993-995.
|
26. |
Rubinger L, Chan C, D'Arco F, et al. Change in presurgical diagnostic imaging evaluation affects subsequent pediatric epilepsy surgery outcome. Epilepsia, 2016, 57(1): 32-40.
|
27. |
Chassoux F, Artiges E, Semah F, et al. F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology, 2017, 88(11): 1045-1053.
|
28. |
Willmann O, Wennberg R, May T, et al. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy A meta-analysis. Seizure, 2007, 16(6): 509-520.
|
29. |
陆玲玲, 陈宇峰, 郭佳, 等. 成人颞叶癫痫患者发作间期 18F-FDG PET-CT 脑代谢显像与术后疗效的关系. 中国临床医学影像杂志, 2020, 31(2): 87-91.
|
30. |
Nelissen N, Van Paesschen W, Baete K, et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage, 2006, 32(2): 684-695.
|
31. |
刘远梅. PET-CT 对 MRI 阴性的颞叶癫痫术前定位和疗效的价值分析. 现代养生(下半月版), 2017, (1): 45.
|
32. |
Kamm J, Boles Ponto LL, Manzel K, et al. Temporal lobe asymmetry in FDG-PET uptake predicts neuropsychological and seizure outcomes after temporal lobectomy. Epilepsy Behav, 2018, 78(1): 62-67.
|
33. |
郝谦谦, 李迪彬, 李殿友, 等. PET-MRI 异机融合图形对影像学阴性的难治性颞叶癫痫手术疗效的价值. 中华神经外科杂志, 2014, 30(12): 1262-1265.
|
34. |
Gok B, Jallo G, Hayeri R, et al. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology, 2013, 55(5): 541-550.
|
35. |
Lin YC, Fang YH, Wu G, et al. Quantitative positron emission tomography-guided magnetic resonance imaging postprocessing in magnetic resonance imaging-negative epilepsies. Epilepsia, 2018, 59(8): 1583-1594.
|
36. |
Mitterhauser M, Wadsak W, Wabnegger L, et al. Biological evaluation of 2'-[18F]fluoroflumazenil ([18F]FFMZ), a potential GABA receptor ligand for PET. Nucl Med Biol, 2004, 31(2): 291-295.
|
37. |
林都, 王治国, 张国旭. MRI 与发作间期 18F-FDG 及 11 C-FMZ PET-CT 显像对经典型海马硬化性难治性癫癎的诊断价值. 中华核医学与分子影像杂志, 2019, 39(12): 726-731.
|
38. |
Hodolic M, Topakian R, Pichler R. (18)F-fluorodeoxyglucose and (18)F-flumazenil positron emission tomography in patients with refractory epilepsy. Radiol Oncol, 2016, 50(3): 247-253.
|
39. |
Juhász C, Asano E, Shah A, et al. Focal decreases of cortical GABAA receptor binding remote from the primary seizure focus: what do they indicate? Epilepsia, 2009, 50(2): 240-250.
|
40. |
MadarI, Lesser R P, Krauss G et al. Imaging of delta- and mu-opioid receptors in temporal lobe epilepsy by positron emission tomography. Ann. Neurol, 1997, 41: 358-367.
|
41. |
McGinnity CJ, Shidahara M, Feldmann M, et al. Quantification of opioid receptor availability following spontaneous epileptic seizures: correction of [11C]diprenorphine PET data for the partial-volume effect. Neuroimage, 2013, 79(10): 72-80.
|
42. |
Hammers A, Asselin MC, Hinz R, et al. Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain, 2007, 130(4): 1009-1016.
|
43. |
Chugani HT, Luat AF, Kumar A, et al. α-[11C]-Methyl-L-tryptophan -PET in 191 patients with tuberous sclerosis complex. Neurology, 2013, 81(7): 674-680.
|
44. |
Liew CJ, Lim YM, Bonwetsch R, et al. 18F-FCWAY and 18F-FDG PET in MRI-negative temporal lobe epilepsy. Epilepsia, 2009, 50(2): 234-239.
|
45. |
Didelot A, Mauguière F, Redouté J, et al. Voxel-based analysis of asymmetry index maps increases the specificity of 18F-MPPF PET abnormalities for localizing the epileptogenic zone in temporal lobe epilepsies. J Nucl Med, 2010, 51(11): 1732-1739.
|
46. |
Didelot A, Ryvlin P, Lothe A, et al. PET imaging of brain 5-HT1A receptors in the preoperative evaluation of temporal lobe epilepsy. Brain, 2008, 131(10): 2751-2764.
|
47. |
Leniger T, Kananura C, Hufnagel A, et al. A new Chrna4 mutation with low penetrance in nocturnal frontal lobe epilepsy. Epilepsia, 2003, 44(7): 981-985.
|
48. |
Garibotto V, Wissmeyer M, Giavri Z, et al. Nicotinic receptor abnormalities as a biomarker in idiopathic generalized epilepsy. Eur J Nucl Med Mol Imaging, 2019, 46(2): 385-395.
|
49. |
Loddenkemper T, Wyllie E, Hirsch E. Epileptic syndromes with focal seizures of childhood and adolescence. Handb Clin Neurol, 2012, 107: 195-208.
|