癫痫的主要症状负担即癫痫发作的临床表现。癫痫症状学产生的神经机制,尤其是复杂行为的神经机制,仍知之甚少。在将癫痫视为网络而非局灶性障碍的框架中,我们可以将症状学视为由一组相互关联的结构动态产生的,这些结构之间按一定规律相互作用,而不仅是简单的解剖定位,从而产生相应的临床表现。这需要我们如何看待致痫区的范式转变,包括从术前评估的角度。症状学是一个关键的数据来源,尽管它在研究中的应用面临着重大的方法学挑战,包括观察者的偏倚和症状学归类的差异。更好地理解症状学分类和病理生理学相关性与癫痫分类系统有关。神经机制以及不同症状学模式的解剖相关知识的进步有助于提高癫痫网络的知识,并可能有助于治疗创新。
Citation: AileenMcGonigal, FabriceBartolomei, PatrickChauvel, 姚晨 王圆庆 黎思娴 蔡晓东 译, 胡湘蜀 审. 论癫痫症状学. Journal of Epilepsy, 2022, 8(2): 174-183. doi: 10.7507/2096-0247.202112006 Copy
1. | Martinet L, Quain J. Manual of pathology: Containing the symptoms, diagnosis, and morbid characters of diseases; Together with an exposition of the different methods of examination, applicable to affections of the head, chest, & abdomen. Philadelphia, USA: W. Simpkin & R. Marshall, 1829. |
2. | Mackenzie J. The theory of disturbed reflexes in the production of symptoms of disease. BMJ, 1921, 1(3135): 147-153. |
3. | Engel J. Update on surgical treatment of the epilepsies: summary of The Second International Palm Desert Conference on the Surgical Treatment of the Epilepsies (1992). Neurology, 1993, 43(8): 1612. |
4. | Magiorkinis E, Sidiropoulou K, Diamantis A. Hallmarks in the history of epilepsy: epilepsy in antiquity. Epilepsy Behav, 2010, 17(1): 103-108. |
5. | Jackson JH. Selected writings of John Hughlings Jackson: on epilepsy and epileptiform convulsions. London: Hodder and Stoughton, 1931. |
6. | Penfield W, Gage L. Cerebral localization of epileptic manifestations. Arch Neurol Psychiatr, 1933, 30(4): 709-727. |
7. | Gastaut H, Broughton RJ. Epileptic Seizures: Clinical and Electrographic Features, Diagnosis and Treatment. Springfield, Illinois, USA: Charles C. Thomas Publisher, 1972. |
8. | Bancaud J, Talairach J, Bonis A, et al. La Stéreo-électroencéphalographie Dans L'épilepsie (Bancaud J, editor). Paris: Masson, 1965: 113-146. |
9. | Bancaud J, Talairach J. La stéréo-électroencéphalographie dans l'épilepsie: informations neurophysiopathologiques apportées par l'investigation fonctionnelle stéreotaxique. Paris: Masson et Cie, 1965. |
10. | Gastaut H. Dictionary of epilepsy, 1973. |
11. | Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4): 676-685. |
12. | Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 522-530. |
13. | Classification Co, Epilepsy TotILA. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia, 1981, 22: 489-501. |
14. | Chauvel P, Gonzalez-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. Handb Clin Neurol, 2019, 161: 45-71. |
15. | Chauvel P. Contributions of Jean Talairach and Jean Bancaud to Epilepsy Surgery Epilepsy Surgery, 2nd ed. Philadelphia, PA:Lippincott Williams & Wilkins, 2001: 35-41. |
16. | McGonigal A. Semiology and epileptic networks. Neurosurg Clin N Am, 2020, 31(3): 373-385. |
17. | Gastaut H. Clinical and electroencephalographical classification of epileptic seizures. Epilepsia, 1970, 11(1): 102-112. |
18. | Lüders HO, Burgess R, Noachter S. Expanding the International Classification of seizures to provide localization information. Neurology, 1993, 43(9): 1650. |
19. | Lüders H, Acharya J, Baumgartner C, et al. Semiological seizure classification. Epilepsia, 1998, 39(4): 1006-1013. |
20. | Lüders H, Akamatsu N, Amina S, et al. Critique of the 2017 epileptic seizure and epilepsy classifications. Epilepsia, 2019, 60(4): 1032-1039. |
21. | Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia, 2002, 43(3): 219-227. |
22. | Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscientist, 2012, 18(4): 360-372. |
23. | Bartolomei F, Lagarde S, Wendling F, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia, 2017, 58(7): 1131-1147. |
24. | Taylor JG. Neural networks and the brain. In:Conrad M, Güttinger W, Dal Cin M, editors. Physics and Mathematics of the Nervous System. Berlin, Heidelberg:Springer, 1974: 230-253. |
25. | McNamara JO. Kindling: an animal model of complex partial epilepsy. Ann Neurol, 1984, 16(S1): S72-76. |
26. | Bancaud J, Brunet-Bourgin F, Chauvel P, et al. Anatomical origin of déjà vu and vivid ‘memories’ in human temporal lobe epilepsy. Brain, 1994, 117(Pt 1): 71–90. |
27. | Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain, 2001, 124: 1683-1700. |
28. | Chauvel P. The epileptogenic zone: a critical reconstruction. In:Schuele SU, editor. A Practical Approach to Stereo EEG. New York, NY:Springer Publishing Company, 2020: 105-120. |
29. | Munari C, Bancaud J. The role of stereo-electroencephalography (SEEG) in the evaluation of partial epileptic seizures. In:Porter RJ, Morselli PL, editors. The Epilepsies London. London: Butterworth, 1985: 267-306. |
30. | Wendling F, Bartolomei F, Bellanger JJ, et al. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin Neurophysiol, 2001, 112(7): 1201-1218. |
31. | Bartolomei F, Wendling F, Vignal J-P, Kochen S, Bellanger J-J, Badier J-M, et al. Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electroencephalography. Clin Neurophysiol, 1999, 110: 1741-54. |
32. | Wendling F, Chauvel P, Biraben A, Bartolomei F. From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci, 2010, 4: 154. |
33. | Bartolomei F, Wendling F, Chauvel P. The concept of an epileptogenic network in human partial epilepsies. Neurochirurgie, 2008, 54: 174-184. |
34. | Schulz R, Luders HO, Tuxhorn I, et al. Localization of epileptic auras induced on stimulation by subdural electrodes. Epilepsia, 1997, 38(12): 1321-1329. |
35. | Wyllie E, Luders H, Morris HH, et al. The lateralizing significance of versive head and eye movements during epileptic seizures. Neurology, 1986, 36(5): 606. |
36. | Kotagal P, Luders H, Morris HH, et al. Dystonic posturing in complex partial seizures of temporal lobe onset: a new lateralizing sign. Neurology, 1989, 39(2): 196. |
37. | Laskowitz DT, Sperling MR, French JA, et al. The syndrome of frontal lobe epilepsy: characteristics and surgical management. Neurology, 1995, 45(4): 780-787. |
38. | Gil-Nagel A, Risinger MW. Ictal semiology in hippocampal versus extra hippocampal temporal lobe epilepsy. Brain, 1997, 120(1): 183-192. |
39. | Ficker DM, Cascino GD, Trenerry MR, et al. Lesional temporal lobe epilepsy: ictal semiology and operative outcome. J Epilepsy, 1997, 10(6): 298-302. |
40. | Jobst BC, Siegel AM, Thadani VM, et al. Intractable seizures of frontal lobe origin: clinical characteristics, localizing signs, and results of surgery. Epilepsia, 2000, 41(9): 1139-1152. |
41. | Lüders H. Symptomatogenic areas and electrical cortical stimulation. In: Luders HO, Noachtar S, editors. Epileptic seizures: Pathophysiology and clinical semiology. New York, NY: Churchill Livingstone, 2000: 131-140. |
42. | Horsley V. Remarks on the surgery of the central nervous system. BMJ, 1890, 2(1562): 1286-1292. |
43. | Jobst BC, Cascino GD. Resective epilepsy surgery for drug resistant focal epilepsy. JAMA, 2015, 313(3): 285-293. |
44. | Hebbink J, Meijer H, Huiskamp G, et al. Phenomenological network models: lessons for epilepsy surgery. Epilepsia, 2017, 58(10): e147-151. |
45. | Jehi L, Friedman D, Carlson C, et al. The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia, 2015, 56(10): 1526-1533. |
46. | de Tisi J, Bell GS, Peacock JL, et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet, 2011, 378: 1388-1395. |
47. | Clark A. An embodied cognitive science? Trends Cogn Sci, 1999, 3: 345–351. |
48. | Wendling F, Badier JM, Chauvel P, et al. A method to quantify invariant information in depth-recorded epileptic seizures. Electroencephalogr Clin Neurophysiol, 1997, 102(6): 472-485. |
49. | Jirsa VK, Proix T, Perdikis D, et al. The virtual epileptic patient: individualized wholebrain models of epilepsy spread. NeuroImage, 2017, 145: 377-388. |
50. | Chauvel P, McGonigal A. Emergence of semiology in epileptic seizures. Epilepsy Behav, 2014, 38: 94-103. |
51. | Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry, 2012, 83: 1238-48. |
52. | Lytton WW, Arle J, Bobashev G, et al. Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform, 2017, 4(4): 219-330. |
53. | Isnard J, Guénot M, Sindou M, et al. Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study. Epilepsia, 2004, 45(4): 1079-1090. |
54. | Ostrowsky K, Isnard J, Ryvlin P, et al. Functional mapping of the insular cortex: clinical implication in temporal lobe epilepsy. Epilepsia, 2000, 41(2): 681-686. |
55. | Singh R, Principe A, Tadel F, et al. Mapping the insula with stereo-electroencephalography: the emergence of semiology in insula lobe seizures. Ann Neurol, 2020, 88: 477-488. |
56. | Peltola ME, Trébuchon A, Lagarde S, et al. Anatomoelectroclinical features of SEEG-confirmed pure insular-onset epilepsy. Epilepsy Behav, 2020, 105: 106964. |
57. | Wang H, McGonigal A, Zhang K, et al. Semiologic subgroups of insulo-opercular seizures based on connectional architecture atlas. Epilepsia, 2020, 61(5): 984-994. |
58. | Cardinale F, Rizzi M, Vignati E, et al. Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre. Brain, 2019, 142: 2688-2704. |
59. | Bartolomei F, Barbeau EJ, Nguyen T, et al. Rhinal-hippocampal interactions during deja vu. Clin Neurophysiol, 2012, 123: 489-495. |
60. | Perrone-Bertolotti M, Alexandre S, Jobb AS, et al. Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Hum Brain Mapp, 2020, 41(14): 4113-4126. |
61. | Maillard L, Gavaret M, Régis J, et al. Fast epileptic discharges associated with ictal negative motor phenomena. Clin Neurophysiol, 2014, 125(12): 2344-2348. |
62. | Talairach J, Bancaud J, Geier S, et al. The cingulate gyrus and human behaviour. Electroencephalogr Clin Neurophysiol, 1973, 34(1): 45-52. |
63. | Caruana F, Gerbella M, Avanzini P, et al. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain, 2018, 141(10): 3035-30551. |
64. | Engel J. Can we replace the terms “focal” and “generalized”? Generalized seizures: from clinical phenomenology to understanding system and networks (Hirsch E, Andermann F, Chauvel P, Engel J, Lopes da Silva F, Luders H, editors). Montrouge, France:John Libbey Eurotext, 2006: 305-325. |
65. | Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav, 2002, 3(3): 219-331. |
66. | Englot DJ, Yang LI, Hamid H, et al. Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain, 2010, 133(12): 3764-3777. |
67. | Guedj E, McGonigal A, Vaugier L, et al. Metabolic brain PET pattern underlying hyperkinetic seizures. Epilepsy Res, 2012, 101(3): 237-245. |
68. | Vercueil L, Hirsch E. Seizures and the basal ganglia: a review of the clinical data. Epileptic Disord, 2002, 4: 47-54. |
69. | Pizzo F, Roehri N, Giusiano B, et al. The ictal signature of thalamus and basal ganglia in focal epilepsy. Neurology, 2020, 96: e280-293. |
70. | Aupy J, Wendling F, Taylor K, et al. Cortico-striatal synchronization in human focal seizures. Brain, 2019, 142(5): 1282-1295. |
71. | Arthuis M, Valton L, Régis J, et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronization. Brain, 2009, 132(8): 2091-2101. |
72. | Mesulam M. The evolving landscape of human cortical connectivity: facts and inferences. NeuroImage, 2012, 62(4): 2182-2189. |
73. | Fayerstein J, McGonigal A, Pizzo F, et al. Quantitative analysis of hyperkinetic seizures and correlation with seizure onset zone. Epilepsia, 2020, 61(5): 1019-1026. |
74. | Bonini F, McGonigal A, Trébuchon A, et al. Frontal lobe seizures: From clinical semiology to localization. Epilepsia, 2014, 55(2): 264-277. |
75. | Badre D, D'Esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci, 2009, 10: 659–669. |
76. | Zalta A, Hou J-C, Thonnat M, et al. Neural correlates of rhythmic rocking in prefrontal seizures. Neurophysiol Clin, 2020, 50(5): 331-338. |
77. | Machado S, Bonini F, McGonigal A, et al. Prefrontal seizure classification based on stereo-EEG quantification and automatic clustering. Epilepsy Behav, 2020, 112: 107436. |
78. | Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci, 2003, 4(7): 573-586. |
79. | Adolphs R, Anderson DJ. The Neuroscience of Emotion: A New Synthesis. Princeton, NJ, USA: Princeton University Press, 2018. |
80. | Koch C, Massimini M, Boly M, et al. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci, 2016, 17(5): 307-321. |
81. | Gibbs SA, Proserpio P, Terzaghi M, et al. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG. Sleep Med Rev, 2016, 25: 4-20. |
82. | Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci, 2008, 31(1): 359-387. |
83. | McGonigal A, Chauvel P. Prefrontal seizures manifesting as motor stereotypies. Mov Disord, 2014, 29(9): 1181-1185. |
84. | Bartolomei F, Guye M, Wendling F. Abnormal binding and disruption in large scale networks involved in human partial seizures. EPJ Nonlinear Biomed Phys, 2013, 1(1): 1-16. |
85. | Barbeau E, Wendling F, Régis J, et al. Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia, 2005, 43(9): 1329-1337. |
86. | Bartolomei F, Wendling F, Vignal JP, et al. Neural networks underlying epileptic humming. Epilepsia, 2002, 43: 1001-1012. |
87. | Aupy J, Noviawaty I, Krishnan B, et al. Insulo-opercular cortex generates oroalimentary automatisms in temporal seizures. Epilepsia, 2018, 59(3): 583-594. |
88. | Lambert I, Arthuis M, McGonigal A, et al. Alteration of global workspace during loss of consciousness: a study of parietal seizures. Epilepsia, 2012, 53(12): 2104-2110. |
89. | Bonini F, Lambert I, Wendling F, et al. Altered synchrony and loss of consciousness during frontal lobe seizures. Clin Neurophysiol, 2016, 127(2): 1170-1175. |
90. | Bartolomei F, Trébuchon A, Gavaret M, et al. Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks. Clin Neurophysiol, 2005, 116(10): 2473-2479. |
91. | Hou JC, Thonnat M, Huys R, et al. Rhythmic rocking stereotypies in frontal lobe seizures: a quantified video study. Neurophysiol Clin, 2020, 50(2): 75-80. |
92. | Tassinari CA, Rubboli G, Gardella E, et al. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neuroethologic approach. Neurol Sci, 2005, 26(S3): s225-232. |
93. | Gardella E, Rubboli G, Francione S, et al. Seizure-related automatic locomotion triggered by intracerebral electrical stimulation. Epileptic Disord, 2008, 10: 247-252. |
94. | Tassinari CA, Cantalupo G, Högl B, et al. Neuroethological approach to frontolimbic epileptic seizures and parasomnias: the same central pattern generators for the same behaviours. Rev Neurol, 2009, 165(10): 762-768. |
95. | Bartolomei F, Lagarde S, Lambert I, et al. Brain connectivity changes during ictal aggression (a strangulation attempt). Epileptic Disord, 2017, 19: 367-73. |
96. | McGonigal A, Lagarde S, Trébuchon-Dafonseca A, et al. Early onset motor semiology in seizures triggered by cortical stimulation during SEEG. Epilepsy Behav, 2018, 88: 262-267. |
97. | Rugg-Gunn F, Harrison N, Duncan J. Evaluation of the accuracy of seizure descriptions by the relatives of patients with epilepsy. Epilepsy Res, 2001, 43(3): 193-199. |
98. | Beniczky S, Neufeld M, Diehl B, et al. Testing patients during seizures: A European consensus procedure developed by a joint taskforce of the ILAE – Commission on European Affairs and the European Epilepsy Monitoring Unit Association. Epilepsia, 2016, 57(9): 1363-1368. |
99. | Marashly A, Ewida A, Agarwal R, et al. Ictal motor sequences: lateralization and localization values. Epilepsia, 2016, 57(3): 369-375. |
100. | Seneviratne U, Rajendran D, Brusco M, et al. How good are we at diagnosing seizures based on semiology? Epilepsia, 2012, 53: e63–66. |
101. | Blume WT, Lüders HO, Mizrahi E, et al. Glossary of descriptive terminology for Ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia, 2001, 42(9): 1212-1218. |
102. | Reuber M, Brown RJ. Understanding psychogenic nonepileptic seizures—phenomenology, semiology and the integrative cognitive model. Seizure, 2017, 44: 199-205. |
103. | Micoulaud-Franchi JA, Quiles C, Batail JM, et al. Making psychiatric semiology great again: a semiologic, not nosologic challenge. L'Encéphale, 2018, 44(4): 343-353. |
104. | Wong CH, Mohamed A, Larcos G, et al. Brain activation patterns of versive, hypermotor, and bilateral asymmetric tonic seizures. Epilepsia, 2010, 51(10): 2131-2139. |
105. | Kheder A, Thome U, Aung T, et al. Investigation of networks underlying hyperkinetic seizures utilizing ictal SPECT. Neurology, 2020, 95(6): e637-642. |
106. | Newton MR, Berkovic SF, Austin M, et al. Dystonia, clinical lateralization, and regional blood flow changes in temporal lobe seizures. Neurology, 1992, 42(2): 371. |
107. | Trebuchon A, Bartolomei F, McGonigal A, et al. Reversible antisocial behavior in ventromedial prefrontal lobe epilepsy. Epilepsy Behav, 2013, 29(2): 367-373. |
108. | Lothe A, Didelot A, Hammers A, et al. Comorbidity between temporal lobe epilepsy and depression: a [18 F] MPPF PET study. Brain, 2008, 131: 2765-2782. |
109. | Englot DJ, Gonzalez HFJ, Reynolds BB, et al. Relating structural and functional brainstem connectivity to disease measures in epilepsy. Neurology, 2018, 91(1): e67-77. |
110. | Drane DL, Pedersen NP, Sabsevitz DS, et al. Cognitive and emotional mapping with SEEG. Front Neurol, 2021, 12: 407. |
111. | Ahmedt-Aristizabal D, Fookes C, Dionisio S, et al. Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: a focused survey. Epilepsia, 2017, 58(11): 1817-1831. |
112. | Maurel P, McGonigal A, Keriven R, Chauvel P, editors. 3D model fitting for facial expression analysis under uncontrolled imaging conditions. In: 19th International Conference on Pattern Recognition, 2008. |
113. | Cunha JPS, Choupina HMP, Rocha AP, et al. NeuroKinect: a novel low-cost 3Dvideo-EEG system for epileptic seizure motion quantification. PLoS One, 2016, 11(1): e0145669. |
114. | Vieluf S, Reinsberger C, El Atrache R, et al. Autonomic nervous system changes detected with peripheral sensors in the setting of epileptic seizures. Sci Rep, 2020, 10(1): 1-8. |
115. | Amunts K, Knoll AC, Lippert T, et al. The Human Brain Project—synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biol, 2019, 17(7): e3000344. |
116. | Krakauer JW, Ghazanfar AA, Gomez-Marin A, et al. Neuroscience needs behavior: correcting a reductionist bias. Neuron, 2017, 93(3): 480-490. |
117. | Richardson RM. Decision making in epilepsy surgery. Neurosurg Clin N Am, 2020, 31(3): 471-479. |
118. | Olmi S, Petkoski S, Guye M, et al. Controlling seizure propagation in large-scale brain networks. PLoS Comput Biol, 2019, 15(2): e1006805. |
119. | Kundishora AJ, Gummadavelli A, Ma C, et al. Restoring conscious arousal during focal limbic seizures with deep brain stimulation. Cereb Cortex, 2017, 27: 1964-1975. |
120. | Hagiwara K, Jung J, Bouet R, et al. How can we explain the frontal presentation of insular lobe epilepsy? The impact of non-linear analysis of insular seizures. Clin Neurophysiol, 2017, 128: 780-791. |
121. | Roux A, Lagarde S, McGonigal A, et al. Brain connectivity changes during ictal coughing. Epileptic Disord, 2019, 21: 353-357. |
122. | Maillard L, Vignal JP, Gavaret M, et al. Semiologic and electrophysiologic correlations in temporal lobe seizure subtypes. Epilepsia, 2004, 45(7): 1590-1599. |
123. | Bartolomei F, Gavaret M, Hewett R, et al. Neural networks underlying parietal lobe seizures: a quantified study from intracerebral recordings. Epilepsy Res, 2011, 93: 164-176. |
124. | Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, 2008, 131: 1818-1830. |
125. | Marchi A, Bonini F, Lagarde S, et al. Occipital and occipital “plus” epilepsies: a study of involved epileptogenic networks through SEEG quantification. Epilepsy Behav, 2016, 62(1): 104-114. |
- 1. Martinet L, Quain J. Manual of pathology: Containing the symptoms, diagnosis, and morbid characters of diseases; Together with an exposition of the different methods of examination, applicable to affections of the head, chest, & abdomen. Philadelphia, USA: W. Simpkin & R. Marshall, 1829.
- 2. Mackenzie J. The theory of disturbed reflexes in the production of symptoms of disease. BMJ, 1921, 1(3135): 147-153.
- 3. Engel J. Update on surgical treatment of the epilepsies: summary of The Second International Palm Desert Conference on the Surgical Treatment of the Epilepsies (1992). Neurology, 1993, 43(8): 1612.
- 4. Magiorkinis E, Sidiropoulou K, Diamantis A. Hallmarks in the history of epilepsy: epilepsy in antiquity. Epilepsy Behav, 2010, 17(1): 103-108.
- 5. Jackson JH. Selected writings of John Hughlings Jackson: on epilepsy and epileptiform convulsions. London: Hodder and Stoughton, 1931.
- 6. Penfield W, Gage L. Cerebral localization of epileptic manifestations. Arch Neurol Psychiatr, 1933, 30(4): 709-727.
- 7. Gastaut H, Broughton RJ. Epileptic Seizures: Clinical and Electrographic Features, Diagnosis and Treatment. Springfield, Illinois, USA: Charles C. Thomas Publisher, 1972.
- 8. Bancaud J, Talairach J, Bonis A, et al. La Stéreo-électroencéphalographie Dans L'épilepsie (Bancaud J, editor). Paris: Masson, 1965: 113-146.
- 9. Bancaud J, Talairach J. La stéréo-électroencéphalographie dans l'épilepsie: informations neurophysiopathologiques apportées par l'investigation fonctionnelle stéreotaxique. Paris: Masson et Cie, 1965.
- 10. Gastaut H. Dictionary of epilepsy, 1973.
- 11. Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4): 676-685.
- 12. Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 522-530.
- 13. Classification Co, Epilepsy TotILA. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia, 1981, 22: 489-501.
- 14. Chauvel P, Gonzalez-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. Handb Clin Neurol, 2019, 161: 45-71.
- 15. Chauvel P. Contributions of Jean Talairach and Jean Bancaud to Epilepsy Surgery Epilepsy Surgery, 2nd ed. Philadelphia, PA:Lippincott Williams & Wilkins, 2001: 35-41.
- 16. McGonigal A. Semiology and epileptic networks. Neurosurg Clin N Am, 2020, 31(3): 373-385.
- 17. Gastaut H. Clinical and electroencephalographical classification of epileptic seizures. Epilepsia, 1970, 11(1): 102-112.
- 18. Lüders HO, Burgess R, Noachter S. Expanding the International Classification of seizures to provide localization information. Neurology, 1993, 43(9): 1650.
- 19. Lüders H, Acharya J, Baumgartner C, et al. Semiological seizure classification. Epilepsia, 1998, 39(4): 1006-1013.
- 20. Lüders H, Akamatsu N, Amina S, et al. Critique of the 2017 epileptic seizure and epilepsy classifications. Epilepsia, 2019, 60(4): 1032-1039.
- 21. Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia, 2002, 43(3): 219-227.
- 22. Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscientist, 2012, 18(4): 360-372.
- 23. Bartolomei F, Lagarde S, Wendling F, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia, 2017, 58(7): 1131-1147.
- 24. Taylor JG. Neural networks and the brain. In:Conrad M, Güttinger W, Dal Cin M, editors. Physics and Mathematics of the Nervous System. Berlin, Heidelberg:Springer, 1974: 230-253.
- 25. McNamara JO. Kindling: an animal model of complex partial epilepsy. Ann Neurol, 1984, 16(S1): S72-76.
- 26. Bancaud J, Brunet-Bourgin F, Chauvel P, et al. Anatomical origin of déjà vu and vivid ‘memories’ in human temporal lobe epilepsy. Brain, 1994, 117(Pt 1): 71–90.
- 27. Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain, 2001, 124: 1683-1700.
- 28. Chauvel P. The epileptogenic zone: a critical reconstruction. In:Schuele SU, editor. A Practical Approach to Stereo EEG. New York, NY:Springer Publishing Company, 2020: 105-120.
- 29. Munari C, Bancaud J. The role of stereo-electroencephalography (SEEG) in the evaluation of partial epileptic seizures. In:Porter RJ, Morselli PL, editors. The Epilepsies London. London: Butterworth, 1985: 267-306.
- 30. Wendling F, Bartolomei F, Bellanger JJ, et al. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin Neurophysiol, 2001, 112(7): 1201-1218.
- 31. Bartolomei F, Wendling F, Vignal J-P, Kochen S, Bellanger J-J, Badier J-M, et al. Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electroencephalography. Clin Neurophysiol, 1999, 110: 1741-54.
- 32. Wendling F, Chauvel P, Biraben A, Bartolomei F. From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci, 2010, 4: 154.
- 33. Bartolomei F, Wendling F, Chauvel P. The concept of an epileptogenic network in human partial epilepsies. Neurochirurgie, 2008, 54: 174-184.
- 34. Schulz R, Luders HO, Tuxhorn I, et al. Localization of epileptic auras induced on stimulation by subdural electrodes. Epilepsia, 1997, 38(12): 1321-1329.
- 35. Wyllie E, Luders H, Morris HH, et al. The lateralizing significance of versive head and eye movements during epileptic seizures. Neurology, 1986, 36(5): 606.
- 36. Kotagal P, Luders H, Morris HH, et al. Dystonic posturing in complex partial seizures of temporal lobe onset: a new lateralizing sign. Neurology, 1989, 39(2): 196.
- 37. Laskowitz DT, Sperling MR, French JA, et al. The syndrome of frontal lobe epilepsy: characteristics and surgical management. Neurology, 1995, 45(4): 780-787.
- 38. Gil-Nagel A, Risinger MW. Ictal semiology in hippocampal versus extra hippocampal temporal lobe epilepsy. Brain, 1997, 120(1): 183-192.
- 39. Ficker DM, Cascino GD, Trenerry MR, et al. Lesional temporal lobe epilepsy: ictal semiology and operative outcome. J Epilepsy, 1997, 10(6): 298-302.
- 40. Jobst BC, Siegel AM, Thadani VM, et al. Intractable seizures of frontal lobe origin: clinical characteristics, localizing signs, and results of surgery. Epilepsia, 2000, 41(9): 1139-1152.
- 41. Lüders H. Symptomatogenic areas and electrical cortical stimulation. In: Luders HO, Noachtar S, editors. Epileptic seizures: Pathophysiology and clinical semiology. New York, NY: Churchill Livingstone, 2000: 131-140.
- 42. Horsley V. Remarks on the surgery of the central nervous system. BMJ, 1890, 2(1562): 1286-1292.
- 43. Jobst BC, Cascino GD. Resective epilepsy surgery for drug resistant focal epilepsy. JAMA, 2015, 313(3): 285-293.
- 44. Hebbink J, Meijer H, Huiskamp G, et al. Phenomenological network models: lessons for epilepsy surgery. Epilepsia, 2017, 58(10): e147-151.
- 45. Jehi L, Friedman D, Carlson C, et al. The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia, 2015, 56(10): 1526-1533.
- 46. de Tisi J, Bell GS, Peacock JL, et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet, 2011, 378: 1388-1395.
- 47. Clark A. An embodied cognitive science? Trends Cogn Sci, 1999, 3: 345–351.
- 48. Wendling F, Badier JM, Chauvel P, et al. A method to quantify invariant information in depth-recorded epileptic seizures. Electroencephalogr Clin Neurophysiol, 1997, 102(6): 472-485.
- 49. Jirsa VK, Proix T, Perdikis D, et al. The virtual epileptic patient: individualized wholebrain models of epilepsy spread. NeuroImage, 2017, 145: 377-388.
- 50. Chauvel P, McGonigal A. Emergence of semiology in epileptic seizures. Epilepsy Behav, 2014, 38: 94-103.
- 51. Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry, 2012, 83: 1238-48.
- 52. Lytton WW, Arle J, Bobashev G, et al. Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform, 2017, 4(4): 219-330.
- 53. Isnard J, Guénot M, Sindou M, et al. Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study. Epilepsia, 2004, 45(4): 1079-1090.
- 54. Ostrowsky K, Isnard J, Ryvlin P, et al. Functional mapping of the insular cortex: clinical implication in temporal lobe epilepsy. Epilepsia, 2000, 41(2): 681-686.
- 55. Singh R, Principe A, Tadel F, et al. Mapping the insula with stereo-electroencephalography: the emergence of semiology in insula lobe seizures. Ann Neurol, 2020, 88: 477-488.
- 56. Peltola ME, Trébuchon A, Lagarde S, et al. Anatomoelectroclinical features of SEEG-confirmed pure insular-onset epilepsy. Epilepsy Behav, 2020, 105: 106964.
- 57. Wang H, McGonigal A, Zhang K, et al. Semiologic subgroups of insulo-opercular seizures based on connectional architecture atlas. Epilepsia, 2020, 61(5): 984-994.
- 58. Cardinale F, Rizzi M, Vignati E, et al. Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre. Brain, 2019, 142: 2688-2704.
- 59. Bartolomei F, Barbeau EJ, Nguyen T, et al. Rhinal-hippocampal interactions during deja vu. Clin Neurophysiol, 2012, 123: 489-495.
- 60. Perrone-Bertolotti M, Alexandre S, Jobb AS, et al. Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Hum Brain Mapp, 2020, 41(14): 4113-4126.
- 61. Maillard L, Gavaret M, Régis J, et al. Fast epileptic discharges associated with ictal negative motor phenomena. Clin Neurophysiol, 2014, 125(12): 2344-2348.
- 62. Talairach J, Bancaud J, Geier S, et al. The cingulate gyrus and human behaviour. Electroencephalogr Clin Neurophysiol, 1973, 34(1): 45-52.
- 63. Caruana F, Gerbella M, Avanzini P, et al. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain, 2018, 141(10): 3035-30551.
- 64. Engel J. Can we replace the terms “focal” and “generalized”? Generalized seizures: from clinical phenomenology to understanding system and networks (Hirsch E, Andermann F, Chauvel P, Engel J, Lopes da Silva F, Luders H, editors). Montrouge, France:John Libbey Eurotext, 2006: 305-325.
- 65. Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav, 2002, 3(3): 219-331.
- 66. Englot DJ, Yang LI, Hamid H, et al. Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain, 2010, 133(12): 3764-3777.
- 67. Guedj E, McGonigal A, Vaugier L, et al. Metabolic brain PET pattern underlying hyperkinetic seizures. Epilepsy Res, 2012, 101(3): 237-245.
- 68. Vercueil L, Hirsch E. Seizures and the basal ganglia: a review of the clinical data. Epileptic Disord, 2002, 4: 47-54.
- 69. Pizzo F, Roehri N, Giusiano B, et al. The ictal signature of thalamus and basal ganglia in focal epilepsy. Neurology, 2020, 96: e280-293.
- 70. Aupy J, Wendling F, Taylor K, et al. Cortico-striatal synchronization in human focal seizures. Brain, 2019, 142(5): 1282-1295.
- 71. Arthuis M, Valton L, Régis J, et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronization. Brain, 2009, 132(8): 2091-2101.
- 72. Mesulam M. The evolving landscape of human cortical connectivity: facts and inferences. NeuroImage, 2012, 62(4): 2182-2189.
- 73. Fayerstein J, McGonigal A, Pizzo F, et al. Quantitative analysis of hyperkinetic seizures and correlation with seizure onset zone. Epilepsia, 2020, 61(5): 1019-1026.
- 74. Bonini F, McGonigal A, Trébuchon A, et al. Frontal lobe seizures: From clinical semiology to localization. Epilepsia, 2014, 55(2): 264-277.
- 75. Badre D, D'Esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci, 2009, 10: 659–669.
- 76. Zalta A, Hou J-C, Thonnat M, et al. Neural correlates of rhythmic rocking in prefrontal seizures. Neurophysiol Clin, 2020, 50(5): 331-338.
- 77. Machado S, Bonini F, McGonigal A, et al. Prefrontal seizure classification based on stereo-EEG quantification and automatic clustering. Epilepsy Behav, 2020, 112: 107436.
- 78. Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci, 2003, 4(7): 573-586.
- 79. Adolphs R, Anderson DJ. The Neuroscience of Emotion: A New Synthesis. Princeton, NJ, USA: Princeton University Press, 2018.
- 80. Koch C, Massimini M, Boly M, et al. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci, 2016, 17(5): 307-321.
- 81. Gibbs SA, Proserpio P, Terzaghi M, et al. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG. Sleep Med Rev, 2016, 25: 4-20.
- 82. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci, 2008, 31(1): 359-387.
- 83. McGonigal A, Chauvel P. Prefrontal seizures manifesting as motor stereotypies. Mov Disord, 2014, 29(9): 1181-1185.
- 84. Bartolomei F, Guye M, Wendling F. Abnormal binding and disruption in large scale networks involved in human partial seizures. EPJ Nonlinear Biomed Phys, 2013, 1(1): 1-16.
- 85. Barbeau E, Wendling F, Régis J, et al. Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia, 2005, 43(9): 1329-1337.
- 86. Bartolomei F, Wendling F, Vignal JP, et al. Neural networks underlying epileptic humming. Epilepsia, 2002, 43: 1001-1012.
- 87. Aupy J, Noviawaty I, Krishnan B, et al. Insulo-opercular cortex generates oroalimentary automatisms in temporal seizures. Epilepsia, 2018, 59(3): 583-594.
- 88. Lambert I, Arthuis M, McGonigal A, et al. Alteration of global workspace during loss of consciousness: a study of parietal seizures. Epilepsia, 2012, 53(12): 2104-2110.
- 89. Bonini F, Lambert I, Wendling F, et al. Altered synchrony and loss of consciousness during frontal lobe seizures. Clin Neurophysiol, 2016, 127(2): 1170-1175.
- 90. Bartolomei F, Trébuchon A, Gavaret M, et al. Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks. Clin Neurophysiol, 2005, 116(10): 2473-2479.
- 91. Hou JC, Thonnat M, Huys R, et al. Rhythmic rocking stereotypies in frontal lobe seizures: a quantified video study. Neurophysiol Clin, 2020, 50(2): 75-80.
- 92. Tassinari CA, Rubboli G, Gardella E, et al. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neuroethologic approach. Neurol Sci, 2005, 26(S3): s225-232.
- 93. Gardella E, Rubboli G, Francione S, et al. Seizure-related automatic locomotion triggered by intracerebral electrical stimulation. Epileptic Disord, 2008, 10: 247-252.
- 94. Tassinari CA, Cantalupo G, Högl B, et al. Neuroethological approach to frontolimbic epileptic seizures and parasomnias: the same central pattern generators for the same behaviours. Rev Neurol, 2009, 165(10): 762-768.
- 95. Bartolomei F, Lagarde S, Lambert I, et al. Brain connectivity changes during ictal aggression (a strangulation attempt). Epileptic Disord, 2017, 19: 367-73.
- 96. McGonigal A, Lagarde S, Trébuchon-Dafonseca A, et al. Early onset motor semiology in seizures triggered by cortical stimulation during SEEG. Epilepsy Behav, 2018, 88: 262-267.
- 97. Rugg-Gunn F, Harrison N, Duncan J. Evaluation of the accuracy of seizure descriptions by the relatives of patients with epilepsy. Epilepsy Res, 2001, 43(3): 193-199.
- 98. Beniczky S, Neufeld M, Diehl B, et al. Testing patients during seizures: A European consensus procedure developed by a joint taskforce of the ILAE – Commission on European Affairs and the European Epilepsy Monitoring Unit Association. Epilepsia, 2016, 57(9): 1363-1368.
- 99. Marashly A, Ewida A, Agarwal R, et al. Ictal motor sequences: lateralization and localization values. Epilepsia, 2016, 57(3): 369-375.
- 100. Seneviratne U, Rajendran D, Brusco M, et al. How good are we at diagnosing seizures based on semiology? Epilepsia, 2012, 53: e63–66.
- 101. Blume WT, Lüders HO, Mizrahi E, et al. Glossary of descriptive terminology for Ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia, 2001, 42(9): 1212-1218.
- 102. Reuber M, Brown RJ. Understanding psychogenic nonepileptic seizures—phenomenology, semiology and the integrative cognitive model. Seizure, 2017, 44: 199-205.
- 103. Micoulaud-Franchi JA, Quiles C, Batail JM, et al. Making psychiatric semiology great again: a semiologic, not nosologic challenge. L'Encéphale, 2018, 44(4): 343-353.
- 104. Wong CH, Mohamed A, Larcos G, et al. Brain activation patterns of versive, hypermotor, and bilateral asymmetric tonic seizures. Epilepsia, 2010, 51(10): 2131-2139.
- 105. Kheder A, Thome U, Aung T, et al. Investigation of networks underlying hyperkinetic seizures utilizing ictal SPECT. Neurology, 2020, 95(6): e637-642.
- 106. Newton MR, Berkovic SF, Austin M, et al. Dystonia, clinical lateralization, and regional blood flow changes in temporal lobe seizures. Neurology, 1992, 42(2): 371.
- 107. Trebuchon A, Bartolomei F, McGonigal A, et al. Reversible antisocial behavior in ventromedial prefrontal lobe epilepsy. Epilepsy Behav, 2013, 29(2): 367-373.
- 108. Lothe A, Didelot A, Hammers A, et al. Comorbidity between temporal lobe epilepsy and depression: a [18 F] MPPF PET study. Brain, 2008, 131: 2765-2782.
- 109. Englot DJ, Gonzalez HFJ, Reynolds BB, et al. Relating structural and functional brainstem connectivity to disease measures in epilepsy. Neurology, 2018, 91(1): e67-77.
- 110. Drane DL, Pedersen NP, Sabsevitz DS, et al. Cognitive and emotional mapping with SEEG. Front Neurol, 2021, 12: 407.
- 111. Ahmedt-Aristizabal D, Fookes C, Dionisio S, et al. Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: a focused survey. Epilepsia, 2017, 58(11): 1817-1831.
- 112. Maurel P, McGonigal A, Keriven R, Chauvel P, editors. 3D model fitting for facial expression analysis under uncontrolled imaging conditions. In: 19th International Conference on Pattern Recognition, 2008.
- 113. Cunha JPS, Choupina HMP, Rocha AP, et al. NeuroKinect: a novel low-cost 3Dvideo-EEG system for epileptic seizure motion quantification. PLoS One, 2016, 11(1): e0145669.
- 114. Vieluf S, Reinsberger C, El Atrache R, et al. Autonomic nervous system changes detected with peripheral sensors in the setting of epileptic seizures. Sci Rep, 2020, 10(1): 1-8.
- 115. Amunts K, Knoll AC, Lippert T, et al. The Human Brain Project—synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biol, 2019, 17(7): e3000344.
- 116. Krakauer JW, Ghazanfar AA, Gomez-Marin A, et al. Neuroscience needs behavior: correcting a reductionist bias. Neuron, 2017, 93(3): 480-490.
- 117. Richardson RM. Decision making in epilepsy surgery. Neurosurg Clin N Am, 2020, 31(3): 471-479.
- 118. Olmi S, Petkoski S, Guye M, et al. Controlling seizure propagation in large-scale brain networks. PLoS Comput Biol, 2019, 15(2): e1006805.
- 119. Kundishora AJ, Gummadavelli A, Ma C, et al. Restoring conscious arousal during focal limbic seizures with deep brain stimulation. Cereb Cortex, 2017, 27: 1964-1975.
- 120. Hagiwara K, Jung J, Bouet R, et al. How can we explain the frontal presentation of insular lobe epilepsy? The impact of non-linear analysis of insular seizures. Clin Neurophysiol, 2017, 128: 780-791.
- 121. Roux A, Lagarde S, McGonigal A, et al. Brain connectivity changes during ictal coughing. Epileptic Disord, 2019, 21: 353-357.
- 122. Maillard L, Vignal JP, Gavaret M, et al. Semiologic and electrophysiologic correlations in temporal lobe seizure subtypes. Epilepsia, 2004, 45(7): 1590-1599.
- 123. Bartolomei F, Gavaret M, Hewett R, et al. Neural networks underlying parietal lobe seizures: a quantified study from intracerebral recordings. Epilepsy Res, 2011, 93: 164-176.
- 124. Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, 2008, 131: 1818-1830.
- 125. Marchi A, Bonini F, Lagarde S, et al. Occipital and occipital “plus” epilepsies: a study of involved epileptogenic networks through SEEG quantification. Epilepsy Behav, 2016, 62(1): 104-114.
-
Previous Article
同时存在GNAS基因杂合错义突变和HIVEP2基因新生突变的假性甲状旁腺功能减退症共患癫痫一例 -
Next Article
山西省医学会癫痫和神经电生理专委会发展简史