1. |
Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nature Reviews Neuroscience, 2004, 5(6): 449-461.
|
2. |
Duarte CM, Jaremko Ł, Jaremko M. Hypothesis: potentially systemic impacts of elevated CO(2) on the human proteome and health. Frontiers in Public Health, 2020, 8: 543322.
|
3. |
Choudhary A, Mu C, Barrett KT, et al. The link between brain acidosis, breathing and seizures: a novel mechanism of action for the ketogenic diet in a model of infantile spasms. Brain Communications, 2021, 3(4): 189.
|
4. |
Thijs RD, Surges R, O'brien TJ, et al. Epilepsy in adults. Lancet (London, England), 2019, 393(10172): 689-701.
|
5. |
Yang XF, Shi XY, Ju J, et al. 5% CO₂ inhalation suppresses hyperventilation-induced absence seizures in children. Epilepsy Research, 2014, 108(2): 345-348.
|
6. |
Shi XY, Hu LY, Liu MJ, et al. Hypercapnia-induced brain acidosis: Effects and putative mechanisms on acute kainate induced seizures. Life Sciences, 2017, 176: 82-87.
|
7. |
Bonnet U, Bingmann D, Speckmann EJ, et al. Levetiracetam mediates subtle pH-shifts in adult human neocortical pyramidal cells via an inhibition of the bicarbonate-driven neuronal pH-regulation - Implications for excitability and plasticity modulation. Brain Research, 2019, 1710: 146-156.
|
8. |
Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochemistry International, 2008, 52(6): 905-919.
|
9. |
Zhou RP, Liang HY, Hu WR, et al. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Research Reviews, 2023, 83: 101785.
|
10. |
Yoder N, Yoshioka C, Gouaux E. Gating mechanisms of acid-sensing ion channels. Nature, 2018, 555(7696): 397-401.
|
11. |
Cheng Y, Zhang W, Li Y, et al. The role of ASIC1a in epilepsy: a potential therapeutic target. Current Neuropharmacology, 2021, 19(11): 1855-64.
|
12. |
Fliegel L. Role of genetic mutations of the Na(+)/H(+) exchanger isoform 1, in human disease and protein targeting and activity. Molecular and Cellular Biochemistry, 2021, 476(2): 1221-1232.
|
13. |
Zhao H, Carney KE, Falgoust L, et al. Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders. Progress in Neurobiology, 2016, 138-140: 19-35.
|
14. |
Parker MD. Mouse models of SLC4-linked disorders of HCO(3)(-)-transporter dysfunction. American Journal of Physiology Cell Physiology, 2018, 314(5): 569-588.
|
15. |
Ciccone L, Cerri C, Nencetti S, et al. Carbonic anhydrase inhibitors and epilepsy: state of the art and future perspectives. Molecules (Basel, Switzerland), 2021, 26(21): 263-265.
|
16. |
Schuchmann S, Schmitz D, Rivera C, et al. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nature medicine, 2006, 12(7): 817-823.
|
17. |
周马丁. 中间神经元酸敏感离子通道1a在癫痫发生发展中的作用机制. 浙江大学, 2017, 硕士学位论文.
|
18. |
Liang JJ, Huang LF, Chen XM, et al. Amiloride suppresses pilocarpine-induced seizures via ASICs other than NHE in rats. International Journal of Clinical and Experimental Pathology, 2015, 8(11): 14507-14513.
|
19. |
Ievglevskyi O, Isaev D, Netsyk O, et al. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 15021.
|
20. |
Qiao Q, Qu Z, Tian S, et al. Ketogenic diet alleviates hippocampal neurodegeneration possibly via ASIC1a and the mitochondria-mediated apoptotic pathway in a rat model of temporal lobe epilepsy. Neuropsychiatric Disease and Treatment, 2022, 18: 2181-2198.
|
21. |
Yang F, Sun X, Ding Y, et al. Astrocytic acid-sensing ion channel 1a contributes to the development of chronic epileptogenesis. Scientific Reports, 2016, 6: 31581.
|
22. |
Wu H, Wang C, Liu B, et al. Altered expression pattern of acid-sensing ion channel isoforms in piriform cortex after seizures. Molecular Neurobiology, 2016, 53(3): 1782-1793.
|
23. |
Ziemann AE, Schnizler MK, Albert GW, et al. Seizure termination by acidosis depends on ASIC1a. Nature Neuroscience, 2008, 11(7): 816-822.
|
24. |
Odunewu-Aderibigbe A, Fliegel L. Heat shock proteins and the Na(+)/H(+) exchanger. Channels (Austin, Tex), 2017, 11(5): 380-382.
|
25. |
Kang TC, An SJ, Park SK, et al. Alterations in Na+/H+ exchanger and Na+/HCO3- cotransporter immunoreactivities within the gerbil hippocampus following seizure. Brain research Molecular brain research, 2002, 109(1-2): 226-232.
|
26. |
吴旭玲, 董楝, 彭爽, 等. 颞叶外侧癫痫患者脑组织NHE1及凋亡相关蛋白的表达. 中国临床解剖学杂志, 2021, 39(4): 6.
|
27. |
彭爽, 吴旭玲, 于云莉, 等. 钠氢交换体1在氯化锂-匹罗卡品点燃癫痫大鼠模型海马组织内的表达. 贵州医科大学学报, 2021, 46(1): 16-21.
|
28. |
Cengiz P, Kintner DB, Chanana V, et al. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation. PLoS One, 2014, 9(1): e84294.
|
29. |
Shi Y, Kim D, Caldwell M, et al. The role of Na(+)/h (+) exchanger isoform 1 in inflammatory responses: maintaining H(+) homeostasis of immune cells. Advances in Experimental Medicine and Biology, 2013, 961: 411-418.
|
30. |
Jacobs S, Ruusuvuori E, Sipilä ST, et al. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A, 2008, 105(1): 311-316.
|
31. |
Hentschke M, Wiemann M, Hentschke S, et al. Mice with a targeted disruption of the Cl-/HCO3- exchanger AE3 display a reduced seizure threshold. Molecular and Cellular Biology, 2006, 26(1): 182-191.
|
32. |
Halmi P, Parkkila S, Honkaniemi J. Expression of carbonic anhydrases II, IV, VII, VIII and XII in rat brain after kainic acid induced status epilepticus. Neurochemistry International, 2006, 48(1): 24-30.
|
33. |
Ruusuvuori E, Huebner AK, Kirilkin I, et al. Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures. The EMBO Journal, 2013, 32(16): 2275-2286.
|
34. |
Hamidi S, Avoli M. Carbonic anhydrase inhibition by acetazolamide reduces in vitro epileptiform synchronization. Neuropharmacology, 2015, 95: 377-387.
|
35. |
Tolner EA, Hochman DW, Hassinen P, et al. Five percent CO₂ is a potent, fast-acting inhalation anticonvulsant. Epilepsia, 2011, 52(1): 104-114.
|
36. |
Lv RJ, He JS, Fu YH, et al. ASIC1a polymorphism is associated with temporal lobe epilepsy. Epilepsy Research, 2011, 96(1-2): 74-80.
|
37. |
Guo W, Chen X, He JJ, et al. Down-regulated expression of acid-sensing ion channel 1a in cortical lesions of patients with focal cortical dysplasia. Journal of Molecular Neuroscience : MN, 2014, 53(2): 176-182.
|
38. |
Liu X, Xie L, Fang Z, et al. Case Report: Novel SLC9A6 Splicing Variant in a Chinese Boy With Christianson Syndrome With Electrical Status Epilepticus During Sleep. Frontiers in Neurology, 2021, 12: 796283.
|