1. |
Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4): 676-685.
|
2. |
Capovilla G, Wolf P, Beccaria F, et al. The history of the concept of epileptic encephalopathy. Epilepsia, 2013, 54(Suppl 8): 2-5.
|
3. |
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4): 512-521.
|
4. |
Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63(6): 1349-1397.
|
5. |
Beal JC, Cherian K, Moshe SL. Early-onset epileptic encephalopathies: ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol, 2012, 47(5): 317-323.
|
6. |
Hwang SK, Kwon S. Early-onset epileptic encephalopathies and the diagnostic approach to underlying causes. Korean J Pediatr, 2015, 58(11): 407-414.
|
7. |
Nieh SE, Sherr EH. Epileptic encephalopathies: new genes and new pathways. Neurotherapeutics, 2014, 11(4): 796-806.
|
8. |
Yelin K, Alfonso I, Papazian O. Syndrome of Ohtahara. Rev Neurol, 1999, 29(4): 340-342.
|
9. |
Knezević-Pogancev M. Ohtahara syndrome--early infantile epileptic encephalopathy. Med Pregl, 2008, 61(11-12): 581-585.
|
10. |
Liu CT, Yin F, Huang R, et al. The clinical and electroencephalographic characteristics of early myoclonic encephalopathy. Chinese Journal of Pediatrics, 2012, 50(12): 899-902.
|
11. |
Otani K, Abe J, Futagi Y, et al. Clinical and electroencephalographical follow-up study of early myoclonic encephalopathy. Brain Dev, 1989, 11(5): 332-337.
|
12. |
Go CY, Mackay MT, Weiss SK, et al. Evidence-based guideline update: medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology, 2012, 78(24): 1974-1980.
|
13. |
Coppola G. Malignant migrating partial seizures in infancy: an epilepsy syndrome of unknown etiology. Epilepsia, 2009, 50(Suppl 5): 49-51.
|
14. |
Elia M. Myoclonic status in nonprogressive encephalopathies: an update. Epilepsia, 2009, 50(Suppl 5): 41-44.
|
15. |
Wei CM, Xia GZ, Ren RN. Gene mutations in unexplained infantile epileptic encephalopathy: an analysis of 47 cases. Chinese Journal of Contemporary Pediatrics, 2018, 20(2): 125-129.
|
16. |
Archer HL, Evans J, Edwards S, et al. CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet, 2006, 43(9): 729-734.
|
17. |
Melani F, Mei D, Pisano T, et al. CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life. Dev Med Child Neurol, 2011, 53(4): 354-360.
|
18. |
Na JH, Shin S, Yang D, et al. Targeted gene panel sequencing in early infantile onset developmental and epileptic encephalopathy. Brain Dev, 2020, 42(6): 438-448.
|
19. |
Stringer RN, Jurkovicova-Tarabova B, Souza IA, et al. De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy. Mol Brain, 2021, 14(1): 126.
|
20. |
Becker F, Reid CA, Hallmann K, et al. Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy. Epilepsia Open, 2017, 2(3): 334-342.
|
21. |
Eckle VS, Shcheglovitov A, Vitko I, et al. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol, 2014, 592(4): 795-809.
|
22. |
Kodera H, Ohba C, Kato M, et al. De novo GABRA1 mutations in Ohtahara and West syndromes. Epilepsia, 2016, 57(4): 566-573.
|
23. |
Zaman T, Helbig I, Božović IB, et al. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann Neurol, 2018, 83(4): 703-717.
|
24. |
Kleen JK, Scott RC, Lenck-Santini PP, et al. Cognitive and behavioral co-morbidities of epilepsy. Jasper's Basic Mechanisms of the Epilepsies ( 4th ed. ): 1355–1376.
|
25. |
Howell KB, Harvey AS, Archer JS. Epileptic encephalopathy: use and misuse of a clinically and conceptually important concept. Epilepsia, 2016, 57(3): 343-347.
|
26. |
Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord, 2015, 17(2): 101-116.
|
27. |
McNaughton N, Ruan M, Woodnorth MA. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus, 2006, 16(12): 1102-1110.
|
28. |
Roth J, Constantini S, Ekstein M, et al. Epilepsy surgery in infants up to 3 months of age: Safety, feasibility, and outcomes: a multicenter, multinational study. Epilepsia, 2021, 62(8): 1897-1906.
|
29. |
Bittar RG, Rosenfeld JV, Klug GL, et al. Resective surgery in infants and young children with intractable epilepsy. J Clin Neurosci, 2002, 9(2): 142-146.
|
30. |
Gowda S, Salazar F, Bingaman WE, et al. Surgery for catastrophic epilepsy in infants 6 months of age and younger. J Neurosurg Pediatr, 2010, 5(6): 603-607.
|
31. |
Kumar RM, Koh S, Knupp K, et al. Surgery for infants with catastrophic epilepsy: an analysis of complications and efficacy. Childs Nerv Syst, 2015, 31(9): 1479-1491.
|
32. |
Engel J Jr. The current place of epilepsy surgery. Curr Opin Neurol, 2018, 31(2): 192-197.
|
33. |
Jayalakshmi S, Vooturi S, Gupta S, et al. Epilepsy surgery in children. Neurol India, 2017, 65(3): 485-492.
|
34. |
Arya R, Wilson JA, Fujiwara H, et al. Presurgical language localization with visual naming associated ECoG high- gamma modulation in pediatric drug-resistant epilepsy. Epilepsia, 2017, 58(4): 663-673.
|
35. |
Kim JS, Park EK, Shim KW, et al. Hemispherotomy and functional hemispherectomy: indications and outcomes. J Epilepsy Res, 2018, 8(1): 1-5.
|
36. |
Malik SI, Galliani CA, Hernandez AW, et al. Epilepsy surgery for early infantile epileptic encephalopathy (ohtahara syndrome). J Child Neurol, 2013, 28(12): 1607-1617.
|
37. |
Kishima H, Oshino S, Tani N, et al. Which is the most appropriate disconnection surgery for refractory epilepsy in childhood? Neurol Med Chir (Tokyo), 2013, 53(11): 814-820.
|
38. |
Weckhuysen S, Holmgren P, Hendrickx R, et al. Reduction of seizure frequency after epilepsy surgery in a patient with STXBP1 encephalopathy and clinical description of six novel mutation carriers. Epilepsia, 2013, 54(5): e74-80.
|
39. |
Spencer DD and Spencer SS, Corpus callosotomy in the treatment of medically intractable secondarily generalized seizures of children. Cleve Clin J Med, 1989, 56(Suppl Pt 1): S69-78; discussion S79-83.
|
40. |
Nordgren RE, Reeves AG, Viguera AC, et al. Corpus callosotomy for intractable seizures in the pediatric age group. Arch Neurol, 1991, 48(4): 364-372.
|
41. |
Iwasaki M, Uematsu M, Sato Y, et al. Complete remission of seizures after corpus callosotomy. J Neurosurg Pediatr, 2012, 10(1): 7-13.
|
42. |
Moreira-Holguín JC, Barahona-Morán DA, Hidalgo-Esmeraldas J, et al. Neuromodulation of the anterior thalamic nucleus as a therapeutic option for difficult-to-control epilepsy. Neurocirugia (Astur : Engl Ed), 2022, 33(4): 182-189.
|
43. |
Zhou JJ, Chen T, Farber SH, et al. Open-loop deep brain stimulation for the treatment of epilepsy: a systematic review of clinical outcomes over the past decade (2008-present). Neurosurg Focus, 2018, 45(2): E5.
|
44. |
Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia, 2018, 59(2): 273-290.
|
45. |
Yan H, Toyota E, Anderson M, et al. A systematic review of deep brain stimulation for the treatment of drug-resistant epilepsy in childhood. J Neurosurg Pediatr, 2018, 23(3): 274-284.
|
46. |
Guo W, Koo BB, Kim JH, et al. Defining the optimal target for anterior thalamic deep brain stimulation in patients with drug-refractory epilepsy. J Neurosurg, 2020, 134(3): 1054-1063.
|
47. |
Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia, 1990, 31(Suppl 2): S1-6.
|
48. |
Zamponi N, Rychlicki F, Corpaci L, et al. Vagus nerve stimulation (VNS) is effective in treating catastrophic 1 epilepsy in very young children. Neurosurg Rev, 2008, 31(3): 291-297.
|
49. |
So EL. Integration of EEG, MRI, and SPECT in localizing the seizure focus for epilepsy surgery. Epilepsia, 2000, 41(Suppl 3): S48-54.
|
50. |
Kun Lee S, Young Lee S, Kim DW, et al. Occipital lobe epilepsy: clinical characteristics, surgical outcome, and role of diagnostic modalities. Epilepsia, 2005, 46(5): 688-695.
|
51. |
Alim-Marvasti A, Romagnoli G, Dahele K, et al. Probabilistic landscape of seizure semiology localizing values. Brain Commun, 2022, 4(3): fcac130.
|
52. |
Bayat A, Bayat M, Rubboli G, et al. Epilepsy syndromes in the first year of life and usefulness of genetic testing for precision therapy. Genes (Basel), 2021, 12(7): 1051.
|