1. |
Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022, 63(6): 1349-1397.
|
2. |
郑小红, 周有峰, 胡春辉. 遗传性发育性癫痫性脑病神经生物学及临床诊治研究进展. 癫痫杂志, 2024, 10(3): 254-259.
|
3. |
Happ HC, Carvill GL. A 2020 View on the genetics of developmental and epileptic encephalopathies. Epilepsy Curr, 2020, 20(2): 90-96.
|
4. |
童培, 刘艳. 发育性及癫痫性脑病的遗传学研究进展. 癫痫杂志, 2022, 8(4): 338-341.
|
5. |
Guerrini R, Conti V, Mantegazza M, et al. Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum. Physiol Rev, 2023, 103(1): 433-513.
|
6. |
Royer J, Bernhardt BC, Larivière S, et al. Epilepsy and brain network hubs. Epilepsia, 2022, 63(3): 537-550.
|
7. |
van Diessen E, Diederen SJ, Braun KP, et al. Functional and structural brain networks in epilepsy: what have we learned? Epilepsia, 2013, 54(11): 1855-65.
|
8. |
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 2009, 10(3): 186-98.
|
9. |
Sporns O. Graph theory methods: applications in brain networks. Dialogues Clin Neurosci, 2018, 20(2): 111-121.
|
10. |
Gleichgerrcht E, Kocher M, Bonilha L. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy. Epilepsia, 2015, 56(11): 1660-1668.
|
11. |
Goodman AM, Szaflarski JP. Recent advances in neuroimaging of epilepsy. Neurotherapeutics, 2021, 18(2): 811-826.
|
12. |
Winklewski PJ, Sabisz A, Naumczyk P, et al. Understanding the physiopathology behind axial and radial diffusivity changes-what do we know? Front Neurol, 2018, 9: 92.
|
13. |
Wurina, Zang YF, Zhao SG. Resting-state fMRI studies in epilepsy. Neurosci Bull, 2012, 28(4): 449-455.
|
14. |
Mégevand P, Seeck M. Electroencephalography, magnetoencephalography and source localization: their value in epilepsy. Curr Opin Neurol, 2018, 31(2): 176-183.
|
15. |
Baillet S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci, 2017, 20(3): 327-339.
|
16. |
Whelan CD, Altmann A, Botía JA, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain, 2018, 141(2): 391-408.
|
17. |
Bröhl T, Rings T, Pukropski J, et al. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. Front Netw Physiol, 2024, 16(3): 1338864.
|
18. |
Zhang F, Daducci A, He Y, et al. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neuroimage, 2022, 249: 118870.
|
19. |
Natsume J, Ogawa C, Fukasawa T, et al. White Matter Abnormality Correlates with Developmental and Seizure Outcomes in West Syndrome of Unknown Etiology. AJNR Am J Neuroradiol, 2016, 37(4): 698-705.
|
20. |
Ogawa C, Kidokoro H, Fukasawa T, et al. Cytotoxic edema at onset in West syndrome of unknown etiology: A longitudinal diffusion tensor imaging study. Epilepsia, 2018, 59(2): 440-448.
|
21. |
Lee YJ, Yum MS, Kim MJ, et al. Large-scale structural alteration of brain in epileptic children with SCN1A mutation. Neuroimage Clin, 2017, 15: 594-600.
|
22. |
Guerrini R, Striano P, Catarino C, et al. Neuroimaging and neuropathology of Dravet syndrome. Epilepsia, 2011, 52(Suppl 2): 30-34.
|
23. |
Lenge M, Balestrini S, Mei D, et al. Morphometry and network-based atrophy patterns in SCN1A-related Dravet syndrome. Cereb Cortex, 2023, 33(16): 9532-9541.
|
24. |
Lenge M, Balestrini S, Napolitano A, et al. Morphometric network-based abnormalities correlate with psychiatric comorbidities and gene expression in PCDH19-related developmental and epileptic encephalopathy. Transl Psychiatry, 2024, 14(1): 35.
|
25. |
Wang J, Li Y, Wang Y, et al. Multimodal data and machine learning for detecting specific biomarkers in pediatric epilepsy patients with generalized tonic-clonic seizures. Front Neurol, 2018, 9: 1038.
|
26. |
Zhang CT, Sun YL, Shi WB, et al. Brain complexity predicts response to adrenocorticotropic hormone in infantile epileptic spasms syndrome: a retrospective study. Neurol Ther, 2023, 12(1): 129-144.
|
27. |
Shrey DW, Kim McManus O, Rajaraman R, et al. Strength and stability of EEG functional connectivity predict treatment response in infants with epileptic spasms. Clin Neurophysiol, 2018, 129(10): 2137-2148.
|
28. |
Dong Y, Jin L, Li M, et al. Crucial involvement of fast waves and Delta band in the brain network attributes of infantile epileptic spasms syndrome. Front Pediatr, 2023, 11: 1249789.
|
29. |
Dong Y, Xu R, Zhang Y, et al. Different frequency bands in various regions of the brain play different roles in the onset and wake-sleep stages of infantile spasms. Front Pediatr, 2022, 10: 878099.
|
30. |
Zheng R, Feng Y, Wang T, et al. Scalp EEG functional connection and brain network in infants with West syndrome. Neural Netw, 2022, 153: 76-86.
|
31. |
Park KM, Park S, Hur YJ. Brain network reconstruction of abnormal functional connectivity in Lennox-Gastaut syndrome according to drug responsiveness: a retrospective study. Epilepsy Res, 2024, 200: 107312.
|
32. |
Wang Z, Larivière S, Xu Q, et al. Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology, 2019, 93(11): e1112-e1122.
|
33. |
Moeller F, Maneshi M, Pittau F, et al. Functional connectivity in patients with idiopathic generalized epilepsy. Epilepsia, 2011, 52(3): 515-22.
|
34. |
Silva Alves A, Rigoni I, Mégevand P, et al. High-density electroencephalographic functional networks in genetic generalized epilepsy: Preserved whole-brain topology hides local reorganization. Epilepsia, 2024, 65(4): 961-973.
|
35. |
Wang Y, Li Y, Yang L, et al. Altered topological organization of resting-state functional networks in children with infantile spasms. Front Neurosci, 2022, 16: 952940.
|
36. |
Tan Z, Li Y, Zang D, et al. Altered regional homogeneity in epileptic patients with infantile spasm: a resting-state fMRI study. J Xray Sci Technol, 2016, 24(2): 285-295.
|
37. |
Gonen OM, Kwan P, O'Brien TJ, et al. Resting-state functional MRI of the default mode network in epilepsy. Epilepsy Behav, 2020, 111: 107308.
|
38. |
Siniatchkin M, van Baalen A, Jacobs J, et al. Different neuronal networks are associated with spikes and slow activity in hypsarrhythmia. Epilepsia, 2007, 48(12): 2312-2321.
|
39. |
Japaridze N, Muthuraman M, Moeller F, et al. Neuronal networks in west syndrome as revealed by source analysis and renormalized partial directed coherence. Brain Topogr, 2013, 26(1): 157-170.
|
40. |
Archer JS, Warren AE, Jackson GD, et al. Conceptualizing Lennox-Gastaut syndrome as a secondary network epilepsy. Front Neurol, 2014, 5: 225.
|
41. |
Warren AEL, Harvey AS, Vogrin SJ, et al. The epileptic network of Lennox-Gastaut syndrome: Cortically driven and reproducible across age. Neurology, 2019, 93(3): e215-e226.
|
42. |
Moehring J, von Spiczak S, Moeller F, et al. Variability of EEG-fMRI findings in patients with SCN1A-positive Dravet syndrome. Epilepsia, 2013, 54(5): 918-926.
|
43. |
Burianová H, Faizo NL, Gray M, et al. Altered functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res, 2017, 137: 45-52.
|
44. |
Vaessen MJ, Jansen JF, Braakman HM, et al. Functional and structural network impairment in childhood frontal lobe epilepsy. PLoS One, 2014, 9(3): e90068.
|
45. |
Stacey W, Kramer M, Gunnarsdottir K, et al. Emerging roles of network analysis for epilepsy. Epilepsy Res, 2020, 159: 106255.
|
46. |
Kim J, Kim MJ, Kim HJ, et al. Electrophysiological network predicts clinical response to vigabatrin in epileptic spasms. Front Neurol, 2023, 14: 1209796.
|
47. |
Piper RJ, Richardson RM, Worrell G, et al. Towards network-guided neuromodulation for epilepsy. Brain, 2022, 145(10): 3347-3362.
|