1. |
Korth H, Strohbehn K, Tejada F, et al. Miniature atomic scalar magnetometer for space based on the rubidium isotope (87)Rb. J Geophys Res Space Phys, 2016, 121(8): 7870-7880.
|
2. |
Yan B, Peng Y, Zhang Y, et al. From simulation to clinic: Assessing the required channel count for effective clinical use of OPM-MEG systems. Neuroimage, 2025, 314: 121262.
|
3. |
Ren J, Ding M, Peng Y, et al. A comparative study on the detection and localization of interictal epileptiform discharges in magnetoencephalography using optically pumped magnetometers versus superconducting quantum interference devices. Neuroimage, 2025, 312: 121232.
|
4. |
Feys O, Wens V, Depondt C, et al. On-scalp magnetoencephalography based on optically pumped magnetometers to investigate temporal lobe epilepsy. Epilepsia, 2025, doi: 10.1111/epi.18439. Online ahead of print.
|
5. |
Mellor S, Timms RC, O'Neill GC, et al. Combining OPM and lesion mapping data for epilepsy surgery planning: a simulation study. Sci Rep, 2024, 14(1): 2882.
|
6. |
Chen C, Teng P, Meng Q, etal. The potential of OPM-based magnetoencephalography in pre-surgical evaluation of drug-resistant epilepsy. Neurophysiol Clin, 2025, 55(4): 103087.
|
7. |
Feys O, Corvilain P, Aeby A, et al. On-Scalp Optically Pumped Magnetometers versus Cryogenic Magnetoencephalography for Diagnostic Evaluation of Epilepsy in School-aged Children. Radiology, 2022, 304(2): 429-434.
|
8. |
Feys O, Corvilain P, Bertels J, Sculier C, et al. On-scalp magnetoencephalography for the diagnostic evaluation of epilepsy during infancy. Clin Neurophysiol, 2023, 155: 29-31.
|
9. |
An N, Gao Z, Li W, et al. Source localization comparison and combination of OPM-MEG and fMRI to detect sensorimotor cortex responses. Comput Methods Programs Biomed, 2024, 254: 108292.
|
10. |
Greco A, Baek S, Middelmann T, et al. Discrimination of finger movements by magnetomyography with optically pumped magnetometers. Sci Rep, 2023, 13(1): 22157.
|
11. |
Wang X, Teng P, Meng Q, et al. Performance of optically pumped magnetometer magnetoencephalography: validation in large samples and multiple tasks. J Neural Eng, 2024, 21(6).
|
12. |
Liu C, Ma Y, Liang X, et al. Decoding the Spatiotemporal Dynamics of Neural Response Similarity in Auditory Processing: A Multivariate Analysis Based on OPM-MEG. Hum Brain Mapp, 2025, 46(4): e70175.
|
13. |
Power L, Bardouille T, Ikeda KM, et al. Validation of On-Head OPM MEG for Language Laterality Assessment. Brain Topogr, 2024, 38(1): 8.
|
14. |
Rier L, Rhodes N, Pakenham DO, et al. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. Elife, 2024, 13: RP94561.
|
15. |
Natalie Rhodes, Lukas Rier, Krish D. Singh, et al. Measuring the neurodevelopmental trajectory of excitatory-inhibitory balance via visual gamma oscillations. Imaging Neuroscience, 2025, 3 imag_a_00527. Online ahead of print.
|
16. |
Rhodes N, Sato J, Safar K, et al. Paediatric magnetoencephalography and its role in neurodevelopmental disorders. Br J Radiol, 2024, 97(1162): 1591-1601.
|
17. |
Cao F, An N, Xu W, et al. Optical Co-Registration Method of Triaxial OPM-MEG and MRI. IEEE Trans Med Imaging, 2023, 42(9): 2706-2713.
|
18. |
Chai C, Yang X, Zheng Y, et al. Multimodal fusion of magnetoencephalography and photoacoustic imaging based on optical pump: Trends for wearable and noninvasive Brain-Computer interface. Biosens Bioelectron, 2025, 278: 117321.
|
19. |
Ru X, He K, Lyu B, et al. Multimodal neuroimaging with optically pumped magnetometers: A simultaneous MEG-EEG-fNIRS acquisition system. Neuroimage, 2022, 259: 119420.
|