1. |
Zhang S, Holmes TC, DiPersio CM, et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials, 1995, 16(18): 1385-1393.
|
2. |
Giorgio C, Patricia S, Ehud G. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biochem, 2007, 25(5): 211-218.
|
3. |
Davis ME, Motion JP, Narmoneva DA, et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation, 2005, 111(4): 442-450.
|
4. |
Ma Z, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng, 2005, 11(1-2): 101-109.
|
5. |
Jung Y, Kim SH, Kim YH, et al. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomed Mater, 2009, 4(5): 055009.
|
6. |
Rosenberg MD. Cell guidance by alterations in monomolecular films. Science, 1963, 139(3553): 411-412.
|
7. |
Shin H, Zygourakis K, Farach-Carson MC, et al. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials, 2004, 25(5): 895-906.
|
8. |
Hayashibara T, Hiraga T, Yi B, et al. A synthetic peptide fragment of human MEPE stimulates new bone formation in vitro and in vivo. J Bone Miner Res, 2004, 19(3): 455-462.
|
9. |
Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials, 2003, 24(24): 4353-4364.
|
10. |
Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly (ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly (ethyleneglycol) spacer. J Biomed Mater Res, 2002, 61(2): 169-179.
|
11. |
Alsberg E, Anderson KW, Albeiruti A, et al. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res, 2001, 80(11): 2025-2029.
|
12. |
Roberts C, Chen CS, Mrksich M, et al. Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc, 1998, 120(26): 6548-6555.
|
13. |
Robinson D, Hasharoni A, Cohen N, et al. Fibroblast growth factor receptor-3 as a marker for precartilaginous stem cells. Clin Orthop Relat Res, 1999, (367 Suppl): S163-175.
|
14. |
郭风劲, 陈安民, 黄仕龙. 免疫分选软骨前体细胞并诱导永生化的研究. 中华实验外科杂志, 2007, 24(2): 226-228.
|
15. |
Horii A, Wang X, Gelain F, et al. Biological designer self-Assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE, 2007, 2(2): e190.
|
16. |
Yokoi H, Kinoshita T, Zhang S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A, 2005, 102(24): 8414-8419.
|
17. |
张兰兰, 宋鸿, 赵晓军. Self-assembling short-peptide hydrogel for three-dimensional culture of rabbit articular chondrocytes in vitro. 中国组织工程研究与临床康复, 2008, 12(49): 9779-9782.
|
18. |
Barry F, Boynton RE, Liu B, et al. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res, 2001, 268(2): 189-200.
|
19. |
游洪波, 陈安民. 增强型绿色荧光蛋白基因转染及TGFβ3诱导前软骨干细胞向成软骨方向分化. 中华小儿外科杂志, 2004, 25(6): 545-549.
|
20. |
孙凯. TGF-β3诱导大鼠前软骨干细胞向软骨细胞特性方向分化及其在KLD-12自组装肽纳米凝胶中的培养. 武汉: 华中科技大学, 2010.
|
21. |
游洪波, 陈安民, 程浩. 免疫磁性细胞分选技术分离纯化新生大鼠骨骺前软骨干细胞. 中华创伤杂志, 2004, 20(10): 606-608.
|
22. |
Sun J, Zheng Q. Experimental study on self-assembly of KLD-12 peptide hydrogel and 3-D culture of MSC encapsulated within hydrogel in vitro. J Huazhong Univ Sci Technol Med Sci, 2009, 29(4): 512-516.
|
23. |
Wei X, Gao J, Messner K. Maturation-dependent repair of untreated osteochondrol defects in the rabbit knee. J Biomed Mat Res, 1997, 34(1): 63-72.
|
24. |
Zhang S, Holmes T, Lockshin C, et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A, 2003, 90(8): 3334-3338.
|
25. |
Tatebe M, Nakamura R, Kagami H, et al. Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy, 2005, 7(6): 520-530.
|
26. |
Jin XB, Luo ZJ, Wang J. Treatment of rabbit growth plate injuries with an autologous tissue-engineered composite. An experimental study. Cells Tissues Organs, 2006, 183(2): 62-67.
|
27. |
黄志刚, 李峰, 游洪波, 等. 转化生长因子-β3 诱导大鼠前软骨干细胞成软骨分化的量效作用. 华中医学杂志, 2008, 32(3): 185-187.
|
28. |
de Wynter EA, Coutinbo LH, Pei X, et al. Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. Stem Cells, 1995, 13(5): 524-532.
|
29. |
Zhang S. Emerging biological materials through molecular self-assembly. Biotechnol Adv, 2002, 20(5-6): 321-339.
|
30. |
Holmes T, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Pro Natl Acad Sci U S A, 2000, 97(12): 6728-6733.
|
31. |
Aggeli A, Bell M, Boden N, et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature, 1997, 386(6622): 259-262.
|
32. |
Gelain F, Bottai D, Vescovi A, et al. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One, 2006, 1: e119.
|
33. |
Bokhari MA, Akay G, Zhang S, et al. The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material. Biomaterials, 2005, 26(25): 5198-5208.
|
34. |
Kisiday J, Jin M, Kurz B, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A, 2002, 99(15): 9996-10001.
|
35. |
张衣北, 陈安民, 郭风劲, 等. 骨骺干细胞的体外培养以及生长特性观察. 中国康复, 2006, 2(1): 79-82.
|