1. |
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol, 2005, 23(1): 47-55.
|
2. |
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
|
3. |
Borschel GH, Dennis RG, Kuzon WM Jr. Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg, 2004, 113(2): 595-602.
|
4. |
Valentin JE, Turner NJ, Gilbert TW, et al. Functional skeletal muscle formation with a biologic scaffold. Biomaterials, 2010, 31(29): 7475-7484.
|
5. |
Penolazzi L, Mazzitelli S, Vecchiatini R, et al. Human mesenchymal stem cells seeded on extracellular matrix scaffold: Viability and osteogenic potential. J Cell Physiol, 2012, 227(2): 857-866.
|
6. |
Zhu WD, Xu YM, Feng C, et al. Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model. Urologe A, 2011, 50(11): 1420-1425.
|
7. |
Zhang X, Yang J, Li Y, et al. Functional neovascularization in tissue engineering with porcine acellular dermal matrix and human umbilical vein endothelial cells. Tissue Eng Part C Methods, 2011, 17(4): 423-433.
|
8. |
张建, 吴英锋, 陈亮. 猪主动脉脱细胞基质的简化制备及生物学评价. 中国修复重建外科杂志, 2008, 22(3): 364-369.
|
9. |
Wainwright JM, Hashizume R, Fujimoto KL, et al. Right ventricular outflow tract repair with a cardiac biologic scaffold. Cells Tissues Organs, 2012, 195(1-2): 159-170.
|
10. |
Soto-Gutierrez A, Zhang L, Medberry C, et al. A whole organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods, 2011, 17(6): 677-686.
|
11. |
Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med, 2010, 16(7): 814-820.
|
12. |
Petersen TH, Calle EA, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science, 2010, 329(5991): 538-541.
|
13. |
Karabekmez FE, Duymaz A, Moran SL. Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand (N Y), 2009, 4(3): 245-249.
|
14. |
Vindigni V, Mazzoleni F, Rossini K, et al. Reconstruction of ablated rat rectus abdominis by muscle regeneration. Plast Reconstr Surg, 2004, 114(6): 1509-1515.
|
15. |
Conconi MT, De Coppi P, Bellini S, et al. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials, 2005, 26(15): 2567-2574.
|
16. |
薛辉, 陈东, 张秀英, 等. 化学去细胞肌肉组织工程支架与大鼠脊髓的生物相容性. 吉林大学学报: 医学版, 2009, 35(5): 801-804.
|
17. |
Zhang XY, Xue H, Liu JM, et al. Chemically extracted acellular muscle: A new potential scaffold for spinal cord injury repair. J Biomed Mater Res A, 2012, 100(3): 578-587.
|
18. |
Wang B, Borazjani A, Tahai M, et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A, 2010, 94(4): 1100-1110.
|
19. |
Flynn L, Semple JL, Woodhouse KA. Decellularized placental matrices for adipose tissue engineering. J Biomed Mater Res A, 2006, 79(2): 359-369.
|
20. |
Flynn L, Woodhouse KA. Adipose tissue engineering with cells in engineered matrices. Organogenesis, 2008, 4(4): 228-235.
|
21. |
Gomillion CT, Burg KJ. Stem cells and adipose tissue engineering. Biomaterials, 2006, 27(36): 6052-6063.
|
22. |
Cherubino M, Marra KG. Adipose-derived stem cells for soft tissue reconstruction. Regen Med, 2009, 4(1): 109-117.
|
23. |
Huss FR, Kratz G. Adipose tissue processed for lipoinjection shows increased cellular survival in vitro when tissue engineering principles are applied. Scand J Plast Reconstr Surg Hand Surg, 2002, 36(3): 166-171.
|
24. |
Beahm EK, Walton RL, Patrick CW Jr. Progress in adipose tissue construct development. Clin Plast Surg, 2003, 30(4): 547-558, viii.
|
25. |
Patrick CW Jr. Tissue engineering strategies for adipose tissue repair. Anat Rec, 2001, 263(4): 361-366.
|
26. |
Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 2010, 31(17): 4715-4724.
|
27. |
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials, 2011, 32(12): 3233-3243.
|
28. |
卿泉, 秦廷武. 大鼠骨骼肌脱细胞处理方法的优化研究. 中国修复重建外科杂志, 2009, 23(7): 836-839.
|
29. |
Ciapetti G, Cenni E, Pratelli L, et al. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 1993, 14(5): 359-364.
|
30. |
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7(2): 211-228.
|
31. |
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13(12): 4279-4295.
|
32. |
Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003, 5(5): 362-369.
|
33. |
Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res, 2007, 100(9): 1249-1260.
|
34. |
Dobson DE, Kambe A, Block E, et al. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell, 1990, 61(2): 223-230.
|
35. |
Rodriguez AM, Pisani D, Dechesne CA, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med, 2005, 201(9): 1397-1405.
|
36. |
McIntosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 2006, 24(5): 1246-1253.
|