Objective To construct the lentiviral vector to co-express enhanced green fluorescent protein (EGFP) gene and human insul in (insulin) gene, and to explore the condition to transfect human umbil ical cord mesenchymal stem cells (hUCMSCs) so as to lay a foundation for tissue engineered adipose reconstruction and transplantation in vivo in
future. Methods The insulin gene was cloned to lentiviral expression vector with EGFP [pLenti6.3-internal ribosome entry
site (IRES)-EGFP] by recombinant DNA technology, the positive clones were screened, and lentiviral packaged systems and target gene plasmid were co-transfected to package virus in 293T cells by lipofectin. The reporter gene expression was observed by fluorescent inverted phase contrast microscope, virus supernatant was collected, purificated and concentrated, and the titer of recombinant viruses was determinated. hUCMSCs from umbilical cord tissue of mature neonates were isolated and cultured by different multiple of infection (MOI, 0, 1, 3, 5, 7, 10, 15, and 20). By recombinant lentiviral infected hUCMSCs with reporter gene green fluorescent protein expression, the best MOI was screened; recombinant lentiviral infected hUCMSCs at the best MOI, then real-time PCR and Western blot methods were appl ied to detect insulin gene and insul in protein expression levels in cells. Results The recombinant lentiviral vector of co-expressing insulin gene and EGFP gene (pLenti6.3-insulin-IRESEGFP) was successfully constructed. Virus could be packaged, purificated and concentrated successfully. The virus titer was 1.3 × 108 TU/mL. The best MOI was 10 and the transfer efficiency was up to 90% in the same time. Real-time PCR results showed that insulin gene expression of transfected group was positive and non-transfected group was negative; Western blot detection confirmed that insul in protein expression of transfected group was positive in cells and supernatant, but that of non-transfected group was both negative. Conclusion Lentiviral vector pLenti6.3-insulin-IRES-EGFP carrying recombinant insulin gene could effectively transfect hUCMSCs and express insul in protein.
Citation: LIU Yi,XUE Meisi.. RECOMBINANT HUMAN INSULIN GENE LENTIVIRUS TRANSFECTING HUMAN UMBILICAL CORD MESENCHYMAL STEM CELLS IN VITRO. Chinese Journal of Reparative and Reconstructive Surgery, 2010, 24(7): 822-827. doi: Copy