Objective To observe the effect of BMSCs on the cardiac function in diabetes mellitus (DM) rats through injecting BMSCs into the ventricular wall of the diabetic rats and investigate its mechanism. Methods BMSCs isolated from male SD rats (3-4 months old) were cultured in vitro, and the cells at passage 5 underwent DAPI label ing. Thirty clean grade SD inbred strain male rats weighing about 250 g were randomized into the normal control group (group A), the DM group (group B), and the cell transplantation group (group C). The rats in groups B and C received high fat forage for 4 weeks and the intraperitoneal injection of 30 mg/kg streptozotocin to made the experimental model of type II DM. PBS and DAPI-labeled
passage 5 BMSCs (1 × 105/μL, 160 μL) were injected into the ventricular wall of the rats in groups B and C, respectively. After feeding those rats with high fat forage for another 8 weeks, the apoptosis of myocardial cells was detected by TUNEL, the cardiac function was evaluated with multi-channel physiology recorder, the myocardium APPL1 protein expression was detected by Western blot and immunohistochemistry test, and the NO content was detected by nitrate reductase method. Group C underwent all those tests 16 weeks after taking basic forage. Results In group A, the apoptosis rate was 6.14% ± 0.02%, the AAPL1 level was 2.79 ± 0.32, left ventricular -dP/dt (LV-dP/dt) was (613.27 ± 125.36) mm Hg/s (1 mm Hg=0.133 kPa), the left ventricular end-diastol ic pressure (LVEDP) was (10.06 ± 3.24) mm Hg, and the NO content was (91.54 ± 6.15) nmol/mL. In group B, the apoptosis rate was 45.71% ± 0.04%, the AAPL1 level 1.08 ± 0.24 decreased significantly when compared with group A, the LVdP/ dt was (437.58 ± 117.58) mm Hg/s, the LVEDP was (17.89 ± 2.35) mm Hg, and the NO content was (38.91±8.67) nmol/mL. In group C, the apoptosis rate was 27.43% ± 0.03%, the APPL1 expression level was 2.03 ± 0.22, the LV -dP/dt was (559.38 ± 97.37) mm Hg/ s, the LVEDP was (12.55 ± 2.87) mm Hg, and the NO content was (138.79 ± 7.23) nmol/ mL. For the above mentioned parameters, there was significant difference between group A and group B (P lt; 0.05), and between group B and group C (P lt; 0.05). Conclusion BMSCs transplantation can improve the cardiac function of diabetic rats. Its possible mechanism
may be related to the activation of APPL1 signaling pathway and the increase of NO content.
Citation: WU Qinan,DENG Wuquan,CHEN Bing,XIA Li,LIANG Ziwen. EFFECT OF BMSCs TRANSPLANTATION ON CARDIAC FUNCTION OF DIABETES MELLITUS RATS. Chinese Journal of Reparative and Reconstructive Surgery, 2009, 23(10): 1241-1245. doi: Copy