Objective To evaluate the feasibility of poly-L-lactide(PLLA)/porcinederived xenogeneic bone(PDXB) composite as a scaffold for the bone tissue engineering. Methods The film and the scaffold of the PLLA-PDXB composite were respectively prepared by a solution casting method and a solution casting-particle leaching method. The composite film and scaffold were further treated by the surface alkaline hydrolysis. The surface morphology of the composite was observed by the scanning electron microscopy, and hydrophilicity degree of the composite was measured. The OCT-1 osteoblastlike cells were cultured and amplified in vitro as the seeding cells, which werethen implanted on the film and scaffold. The adherence rate, adherence shape,proliferating activity, and growing morphology of the OCT-1 osteoblastlikecells were observed on the film. Results The PDXB particle 50 μm in diameter on average had a similar phase structure to that of hydroxyapatite. But its Ca/P ratio was lower than that of hydroxyapatite. After the surface alkaline hydrolysis, the PDXB particle could be exposed on the surface of the PLLA-PDXB composite. The surface roughness and hydrophilicity of the PLLAPDXB composite were obviously enhanced. The cell adherence rate and the cell proliferation activity of the PLLAPDXB composite were higher than those of the pure PLLA material. The cells tended to grow on the exposed surface of the PDXB particles. The cells seeded on the composite scaffold could migrate to the inside of the composite scaffold and grew well. Conclusion The PLLA-PDXB composite has a good cell affinity, and this kind of composite can hopefullybecome a new scaffold material to be used in the bone tissue engineering.
Citation: QU Xue,BEI Jianzhong,WANG Shenguo.. RESEARCHON CELL AFFINITY OF POLY-L-LACTIDE/PORCINE-DERIVED XENOGENEIC BONE COMPOSITE IN VITRO. Chinese Journal of Reparative and Reconstructive Surgery, 2007, 21(2): 110-114. doi: Copy