Objective To fabricate a novel porous bioactivecomposite biomaterial consisting of poly lactic acid (PLA)bone matrix gelatin(BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. Methods The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3∶1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100200 μm in diameter for theporosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblastlike MC3T3-E1 cells were cultured in the dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 μl of the MC3T3E1 cell suspensions containing 2 ×106 cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 μg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 μg of the crushed PLA material was containedin each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis onthe calcification area was performed by the staining of the alizarin red S. Theco-cultured cells were harvested and lysated in 1 ml of 0.2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. Results The porous PLABMG composite material showed a good homological porosity with a pore diameter of 50-150 μm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in the PLABMG group than in the PLA group and the control group (325.59±70.40 U/gprot, 3.51±1.64 mmol/gprot, 42.98±4.44% vs. 63.62±30.01 U/gprot, 1.04±0.21 mmol/gprot, 9.55±1.94%, and 2.40±1.47 U/gprot, 0.70±0.24 mmol/gprot, 0.86±0.41%; P lt;0.05). Meanwhile, there was a statistically significant difference between the PLA group and the control group in the ALP activity and the calcification area (P lt;0.05). Conclusion The porous PLABMG composite material prepared by the use of SC-CO2 has a good steoinductive activity and can be used as a promising bone biomaterial and a bone tissue engineered scaffold.
Citation: ZHANG Yumin,LI Baoxing,LI Ji,et al.. FABRICATION OF POROUS POLY LACTIC ACID-BONE MATRIX GELATIN COMPOSITEBIOACTIVE MATERIAL AND ITS OSTEOINDUCTIVE ACTIVITY. Chinese Journal of Reparative and Reconstructive Surgery, 2007, 21(2): 135-139. doi: Copy