• Departmentof Orthopae dics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, 200233, P. R. China.;
Export PDF Favorites Scan Get Citation

Objective To explore the influence of different stress environmentson the growth of tissue engineering blood vessels in vivo. Methods The engineering vascular scaffolds were prepared with the porcine small intestinal submucosa(SIS) wrapping vascular endothelial cells and smooth muscle cells,which were implanted into the subcutaneous tissue(subcutaneous group), the femoral quadriceps(intramuscular group), and sheathed the femoral artery(perivascular group) respectively. Four weeks postoperatively, these cultured tissues were harvested, and evaluated by macroscopic observation and histology detection. Results The cultivated tissues in different stress environments had obvious difference in respectof the tubular configuration, cellular proliferation and tissue shape. In subcutaneous group, the wall structure integrity, seed cell proliferation and SIS scaffold decomposition were poor, lumen surface was covered without endothelial cells; in intramuscular group, integrity tubular structure had formed, seed cell proliferation was found to a certain extent, lumen surface was covered with sparseendothelial cells, and a little SIS scaffold was found, cellular and fiber structured arranged irregularly; in perivascular group, vascular-like structure formed, the seed cell growth and proliferation were good, the lumen surface was completely covered with endothelial cells, the smooth muscle cells were in good morphologicaldistribution, the antihydrostatic pressure was 247.0±35 kPa,showingsignificant differences when compared with subcutaneous group(67.0±5.8 kPa) and intramuscular group(104.0±7.6 kPa) (P lt;0.01).The total scoring of tissue engineering blood vessel formation in subcutaneous group, intramuscular group and perivascular group were 5.529±0.272,8.875±0.248 and 14.824±0.253 respectively, and the differences among them were significant (P  lt; 0.05). Conclusion Stress excitation has a great influence on the cellular proliferation and the growth of tissue engineering blood vessel in vivo.

Citation: HAN Bensong,FAN Cunyi,LIU Shenghe,et al.. EFFECTS OF DIFFERENT STRESS ENVIRONMENTS ON GROWTH OF TISSUE ENGINEERING BLOOD VESSELS. Chinese Journal of Reparative and Reconstructive Surgery, 2007, 21(3): 302-306. doi: Copy