Objective To evaluate collagen(Col)hyaluronan (HA) chondroitin sulfate (CS) tri-copolymer as a new biomimetic biodegradable polymer scaffold for application of the articular cartilage tissue engineering. Methods The Col-HACS tricopolymer was prepared by freezing and lyophilization and was cross-linked by 1-ethyl-3(3-dimethy inaminoproyl) carbodiimide (EDC). The morpholog icalcharacteristics of the matrices were evaluated by the SME and HE stainings. The
rabbit chondrocytes were isolated and seeded in the tricopolymer scaffold. Morphology, proliferation and differentiation of glycosaminoglycan (GAG), and phenotypic expression of the rabbit articular chondrocytes cultured within the tricopolymer scaffold were indicated by the histological examination, SEM, biochemica l analysis, and reverse transcriptase PCR for collagen typeⅡ(ColⅡ). Results The chondrocytes proliferated and differentiated well, and th
ey preserved the phenotypic expression of ColⅡ in the Col-HA-CS scaffold. After the 21day cell culture within the Col-HA-CS scaffolds, the cartilage-specific morphologyand the structural characteristics such as lacunae appeared,and DNA and GAG conten ts increased with the time. In addition, DNA and GAG contents were significantly higher in the Col-HA-CS matrix than in the collagen matrix alone (P lt;0.05 ). Conclusion These results show that the Col-HA-CS tri-copolymer matrices can provide an appropriate environment for the generation of cartilage-like tissues and have a potential application in the cartilage tissue engineering scaffold field.
Citation: YAN Jihong,LIU Lingrong,LI Xuemin,et al.. A POTENTIAL USE OF COLLAGEN-HYALURONAN-CHONDROITIN SULFATE TRI-COPOLYMER SCAF FOLD FOR CARTILAGE TISSUE ENGINEERING. Chinese Journal of Reparative and Reconstructive Surgery, 2006, 20(2): 130-133. doi: Copy