Objective To observe the ability to repair bilateralradius bone defect with the composite of β-tricalciumphosphate(βTCP),hyaluronic acid(HA),type I collagen(COL-Ⅰ) and induced marrow stromal cells(MSCs), and to investigate the feasibility of the composite as a bone substitute material.Methods The MSCs of the New Zealand white rabbits were induced into ostoblasts, then combined with β-TCP, HA and COL-Ⅰ. Thirty New Zealand white rabbits were made the bilateral radius bone defects of 2 cm and divided into groups A, B and C. After 8 weeks, β-TCP-HA-COL-Ⅰ-MSCs (group A, n=27 sides), autograft (group B, n=27 sides)andno implant(group C as control, n=6 sides)were implanted into the areas ofbilateral radius bone defects, respectively. The structure of the composite was observed by scanning electron microscope. The repairing effect was observed by gross, histomorphology, X-ray examination, and the degradation rate of inorganic substance at 4, 8 and 12 weeks. The ostogenic area and biomechanics ofgroup A were compared with those of group B at 12 weeks.Results The MSCs could stably grow in vitro, relatively rapidly proliferated, and could be induced into the ostoblasts.The composite was porous. The results of gross, histomorphology and X-ray showed that the bone defects were perfectly repaired in group A and group B, but not in group C. The ostogenic area or biomechanics had no statistically significant difference between groups A and B(P gt;0.05). The weight of inorganic substance in group A were 75% ,57% and 42% at 4,8,12 weeks, respectively.Conclusion MSCs can be used as seedcells in the bone tissue engineering. The composite has porous structure, no reactions of toxicity to the tissue and rapid degradation, and it is an ideal carrier of seed cells.The β-TCP-HA-COL-Ⅰ-MSCs composite has the high ability of repairing bone defect and can serve as an autograft substitute material.
Citation: WEI Ailin,LIU Shiqing,PENG Hao,et al.. AN EXPERIMENTAL STUDY ON REPAIRING BONE DEFECT WITH COMPOSITE OF β-TRICALCIUM PHOSPHATEHYALURONIC ACID-TYPE I COLLAGEN-MARROW STROMAL CELLS. Chinese Journal of Reparative and Reconstructive Surgery, 2005, 19(6): 468-472. doi: Copy